IDEAS home Printed from https://ideas.repec.org/a/spr/eurjco/v4y2016i3d10.1007_s13675-015-0061-8.html
   My bibliography  Save this article

Modeling and optimizing the evacuation of hospitals based on the MRCPSP with resource transfers

Author

Listed:
  • Jens Poppenborg

    (Clausthal University of Technology)

  • Sigrid Knust

    (University of Osnabrück)

Abstract

In this paper, we consider the problem of hospital evacuation and model it as a multi-mode resource-constrained project scheduling problem (MRCPSP) with additional resource transfers and blockings. Based on this model two heuristic decomposition approaches are proposed. The first uses a tabu search algorithm for the mode assignment problem, the scheduling subproblem is solved by adapted serial and parallel schedule generation schemes using priority rules. The second is based on a decomposition into an evacuation and a routing subproblem where solutions are represented by resource flows. Computational experiments were performed for both approaches using randomly generated instances based on real-world scenarios.

Suggested Citation

  • Jens Poppenborg & Sigrid Knust, 2016. "Modeling and optimizing the evacuation of hospitals based on the MRCPSP with resource transfers," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 349-380, September.
  • Handle: RePEc:spr:eurjco:v:4:y:2016:i:3:d:10.1007_s13675-015-0061-8
    DOI: 10.1007/s13675-015-0061-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13675-015-0061-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13675-015-0061-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krüger, Doreen & Scholl, Armin, 2009. "A heuristic solution framework for the resource constrained (multi-)project scheduling problem with sequence-dependent transfer times," European Journal of Operational Research, Elsevier, vol. 197(2), pages 492-508, September.
    2. Nicholas G. Hall & Chelliah Sriskandarajah, 1996. "A Survey of Machine Scheduling Problems with Blocking and No-Wait in Process," Operations Research, INFORMS, vol. 44(3), pages 510-525, June.
    3. Douglas Bish & Esra Agca & Roger Glick, 2014. "Decision support for hospital evacuation and emergency response," Annals of Operations Research, Springer, vol. 221(1), pages 89-106, October.
    4. Mascis, Alessandro & Pacciarelli, Dario, 2002. "Job-shop scheduling with blocking and no-wait constraints," European Journal of Operational Research, Elsevier, vol. 143(3), pages 498-517, December.
    5. Kolisch, Rainer, 1996. "Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation," European Journal of Operational Research, Elsevier, vol. 90(2), pages 320-333, April.
    6. Artigues, Christian & Michelon, Philippe & Reusser, Stephane, 2003. "Insertion techniques for static and dynamic resource-constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 149(2), pages 249-267, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    2. Hua Wang & Jon Dieringer & Steve Guntz & Shankarraman Vaidyaraman & Shekhar Viswanath & Nikolaos H. Lappas & Sal Garcia-Munoz & Chrysanthos E. Gounaris, 2021. "Portfolio-Wide Optimization of Pharmaceutical R&D Activities Using Mathematical Programming," Interfaces, INFORMS, vol. 51(4), pages 262-279, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jens Poppenborg & Sigrid Knust, 2016. "A flow-based tabu search algorithm for the RCPSP with transfer times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(2), pages 305-334, March.
    2. Groflin, Heinz & Klinkert, Andreas, 2007. "Feasible insertions in job shop scheduling, short cycles and stable sets," European Journal of Operational Research, Elsevier, vol. 177(2), pages 763-785, March.
    3. Adhau, Sunil & Mittal, M.L. & Mittal, Abhinav, 2013. "A multi-agent system for decentralized multi-project scheduling with resource transfers," International Journal of Production Economics, Elsevier, vol. 146(2), pages 646-661.
    4. Kadri, Roubila Lilia & Boctor, Fayez F., 2018. "An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case," European Journal of Operational Research, Elsevier, vol. 265(2), pages 454-462.
    5. Meloni, Carlo & Pranzo, Marco & Samà, Marcella, 2022. "Evaluation of VaR and CVaR for the makespan in interval valued blocking job shops," International Journal of Production Economics, Elsevier, vol. 247(C).
    6. Goel, Asvin & Meisel, Frank, 2013. "Workforce routing and scheduling for electricity network maintenance with downtime minimization," European Journal of Operational Research, Elsevier, vol. 231(1), pages 210-228.
    7. Marco Pranzo & Dario Pacciarelli, 2016. "An iterated greedy metaheuristic for the blocking job shop scheduling problem," Journal of Heuristics, Springer, vol. 22(4), pages 587-611, August.
    8. Nikhil Bansal & Mohammad Mahdian & Maxim Sviridenko, 2005. "Minimizing Makespan in No-Wait Job Shops," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 817-831, November.
    9. Christoph Schuster, 2006. "No-wait Job Shop Scheduling: Tabu Search and Complexity of Subproblems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(3), pages 473-491, July.
    10. Alvarez-Valdes, R. & Fuertes, A. & Tamarit, J. M. & Gimenez, G. & Ramos, R., 2005. "A heuristic to schedule flexible job-shop in a glass factory," European Journal of Operational Research, Elsevier, vol. 165(2), pages 525-534, September.
    11. Zhu, Jie & Li, Xiaoping & Wang, Qian, 2009. "Complete local search with limited memory algorithm for no-wait job shops to minimize makespan," European Journal of Operational Research, Elsevier, vol. 198(2), pages 378-386, October.
    12. Abdelhakim AitZai & Brahim Benmedjdoub & Mourad Boudhar, 2016. "Branch-and-bound and PSO algorithms for no-wait job shop scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(3), pages 679-688, June.
    13. Jayanth Krishna Mogali & Joris Kinable & Stephen F. Smith & Zachary B. Rubinstein, 2021. "Scheduling for multi-robot routing with blocking and enabling constraints," Journal of Scheduling, Springer, vol. 24(3), pages 291-318, June.
    14. Mogali, Jayanth Krishna & Barbulescu, Laura & Smith, Stephen F., 2021. "Efficient primal heuristic updates for the blocking job shop problem," European Journal of Operational Research, Elsevier, vol. 295(1), pages 82-101.
    15. Samà, Marcella & D’Ariano, Andrea & D’Ariano, Paolo & Pacciarelli, Dario, 2017. "Scheduling models for optimal aircraft traffic control at busy airports: Tardiness, priorities, equity and violations considerations," Omega, Elsevier, vol. 67(C), pages 81-98.
    16. Kolisch, Rainer & Hartmann, Sonke, 2006. "Experimental investigation of heuristics for resource-constrained project scheduling: An update," European Journal of Operational Research, Elsevier, vol. 174(1), pages 23-37, October.
    17. Corman, Francesco & D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2010. "A tabu search algorithm for rerouting trains during rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 175-192, January.
    18. Carlier, Jacques & Haouari, Mohamed & Kharbeche, Mohamed & Moukrim, Aziz, 2010. "An optimization-based heuristic for the robotic cell problem," European Journal of Operational Research, Elsevier, vol. 202(3), pages 636-645, May.
    19. Tseng, Lin-Yu & Chen, Shih-Chieh, 2006. "A hybrid metaheuristic for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 175(2), pages 707-721, December.
    20. Allahverdi, Ali, 2016. "A survey of scheduling problems with no-wait in process," European Journal of Operational Research, Elsevier, vol. 255(3), pages 665-686.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurjco:v:4:y:2016:i:3:d:10.1007_s13675-015-0061-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.