IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v67y2017icp81-98.html
   My bibliography  Save this article

Scheduling models for optimal aircraft traffic control at busy airports: Tardiness, priorities, equity and violations considerations

Author

Listed:
  • Samà, Marcella
  • D’Ariano, Andrea
  • D’Ariano, Paolo
  • Pacciarelli, Dario

Abstract

This work addresses the real-time optimization of take-off and landing operations at a busy terminal control area in case of traffic congestion. Terminal areas are becoming the bottleneck of the entire air traffic control system, in particular in the major European airports, where there is a limited possibility to build new infrastructure. The real-time problem of effectively managing aircraft operations is particularly challenging, since it is necessary to incorporate the safety regulations into the optimization model and to consider numerous performance indicators that are important to compute good quality solutions. However, in practice there is no well-recognized objective function and traffic controllers often use simple scheduling rules. In this paper, mixed integer linear programming formulations are proposed to investigate the trade-off between various performance indicators of practical interest, while taking into account the safety constraints with a high modeling precision. Experiments are performed for the two major Italian airports, Milano Malpensa and Roma Fiumicino, by simulating various sets of random landing and take-off aircraft disturbances. Practical-size instances are solved to (near)optimality via a commercial solver. The optimized solutions are also compared with a commonly used scheduling rule. A comprehensive computational analysis makes possible the selection of those solutions that are able to find a good compromise among the various indicators and, consequently, the investigation of the most representative formulation.

Suggested Citation

  • Samà, Marcella & D’Ariano, Andrea & D’Ariano, Paolo & Pacciarelli, Dario, 2017. "Scheduling models for optimal aircraft traffic control at busy airports: Tardiness, priorities, equity and violations considerations," Omega, Elsevier, vol. 67(C), pages 81-98.
  • Handle: RePEc:eee:jomega:v:67:y:2017:i:c:p:81-98
    DOI: 10.1016/j.omega.2016.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048316301165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2016.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jason A. D. Atkin & Geert De Maere & Edmund K. Burke & John S. Greenwood, 2013. "Addressing the Pushback Time Allocation Problem at Heathrow Airport," Transportation Science, INFORMS, vol. 47(4), pages 584-602, November.
    2. L. Bianco & P. Dell'Olmo & S. Giordani, 1999. "Minimizing total completion time subject to release dates and sequence‐dependentprocessing times," Annals of Operations Research, Springer, vol. 86(0), pages 393-415, January.
    3. Lieder, Alexander & Stolletz, Raik, 2016. "Scheduling aircraft take-offs and landings on interdependent and heterogeneous runways," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 167-188.
    4. Nicholas G. Hall & Chelliah Sriskandarajah, 1996. "A Survey of Machine Scheduling Problems with Blocking and No-Wait in Process," Operations Research, INFORMS, vol. 44(3), pages 510-525, June.
    5. J E Beasley & M Krishnamoorthy & Y M Sharaiha & D Abramson, 2004. "Displacement problem and dynamically scheduling aircraft landings," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 54-64, January.
    6. Ulrich Dorndorf & Florian Jaehn & Chen Lin & Hui Ma & Erwin Pesch, 2007. "Disruption management in flight gate scheduling," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 61(1), pages 92-114, February.
    7. Adler, Nicole & Liebert, Vanessa & Yazhemsky, Ekaterina, 2013. "Benchmarking airports from a managerial perspective," Omega, Elsevier, vol. 41(2), pages 442-458.
    8. Sabar, Nasser R. & Kendall, Graham, 2015. "An iterated local search with multiple perturbation operators and time varying perturbation strength for the aircraft landing problem," Omega, Elsevier, vol. 56(C), pages 88-98.
    9. Mascis, Alessandro & Pacciarelli, Dario, 2002. "Job-shop scheduling with blocking and no-wait constraints," European Journal of Operational Research, Elsevier, vol. 143(3), pages 498-517, December.
    10. Hamsa Balakrishnan & Bala G. Chandran, 2010. "Algorithms for Scheduling Runway Operations Under Constrained Position Shifting," Operations Research, INFORMS, vol. 58(6), pages 1650-1665, December.
    11. Harilaos N. Psaraftis, 1980. "A Dynamic Programming Approach for Sequencing Groups of Identical Jobs," Operations Research, INFORMS, vol. 28(6), pages 1347-1359, December.
    12. Samà, Marcella & D’Ariano, Andrea & Pacciarelli, Dario, 2013. "Rolling horizon approach for aircraft scheduling in the terminal control area of busy airports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 140-155.
    13. Jason A. D. Atkin & Edmund K. Burke & John S. Greenwood & Dale Reeson, 2007. "Hybrid Metaheuristics to Aid Runway Scheduling at London Heathrow Airport," Transportation Science, INFORMS, vol. 41(1), pages 90-106, February.
    14. Carlo Meloni & Dario Pacciarelli & Marco Pranzo, 2004. "A Rollout Metaheuristic for Job Shop Scheduling Problems," Annals of Operations Research, Springer, vol. 131(1), pages 215-235, October.
    15. Kohl, Niklas & Larsen, Allan & Larsen, Jesper & Ross, Alex & Tiourine, Sergey, 2007. "Airline disruption management—Perspectives, experiences and outlook," Journal of Air Transport Management, Elsevier, vol. 13(3), pages 149-162.
    16. D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2007. "A branch and bound algorithm for scheduling trains in a railway network," European Journal of Operational Research, Elsevier, vol. 183(2), pages 643-657, December.
    17. Ángel Marín, 2006. "Airport management: taxi planning," Annals of Operations Research, Springer, vol. 143(1), pages 191-202, March.
    18. Soomer, M.J. & Franx, G.J., 2008. "Scheduling aircraft landings using airlines' preferences," European Journal of Operational Research, Elsevier, vol. 190(1), pages 277-291, October.
    19. Hanif D. Sherali & J. Cole Smith & Antonio A. Trani, 2002. "An Airspace Planning Model for Selecting Flight-plans Under Workload, Safety, and Equity Considerations," Transportation Science, INFORMS, vol. 36(4), pages 378-397, November.
    20. Andreatta, Giovanni & Dell'Olmo, Paolo & Lulli, Guglielmo, 2011. "An aggregate stochastic programming model for air traffic flow management," European Journal of Operational Research, Elsevier, vol. 215(3), pages 697-704, December.
    21. Leonardo Lamorgese & Carlo Mannino, 2015. "An Exact Decomposition Approach for the Real-Time Train Dispatching Problem," Operations Research, INFORMS, vol. 63(1), pages 48-64, February.
    22. Marco Pranzo & Dario Pacciarelli, 2016. "An iterated greedy metaheuristic for the blocking job shop scheduling problem," Journal of Heuristics, Springer, vol. 22(4), pages 587-611, August.
    23. Avijit Mukherjee & Mark Hansen, 2007. "A Dynamic Stochastic Model for the Single Airport Ground Holding Problem," Transportation Science, INFORMS, vol. 41(4), pages 444-456, November.
    24. Dimitris Bertsimas & Guglielmo Lulli & Amedeo Odoni, 2011. "An Integer Optimization Approach to Large-Scale Air Traffic Flow Management," Operations Research, INFORMS, vol. 59(1), pages 211-227, February.
    25. J E Beasley & J Sonander & P Havelock, 2001. "Scheduling aircraft landings at London Heathrow using a population heuristic," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(5), pages 483-493, May.
    26. Cynthia Barnhart & Dimitris Bertsimas & Constantine Caramanis & Douglas Fearing, 2012. "Equitable and Efficient Coordination in Traffic Flow Management," Transportation Science, INFORMS, vol. 46(2), pages 262-280, May.
    27. Yael Grushka-Cockayne & Bert De Reyck & Zeger Degraeve, 2008. "An Integrated Decision-Making Approach for Improving European Air Traffic Management," Management Science, INFORMS, vol. 54(8), pages 1395-1409, August.
    28. Michael O. Ball & Robert Hoffman & Avijit Mukherjee, 2010. "Ground Delay Program Planning Under Uncertainty Based on the Ration-by-Distance Principle," Transportation Science, INFORMS, vol. 44(1), pages 1-14, February.
    29. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    30. Narciso, Mercedes E. & Piera, Miquel A., 2015. "Robust gate assignment procedures from an airport management perspective," Omega, Elsevier, vol. 50(C), pages 82-95.
    31. Balázs Kotnyek & Octavio Richetta, 2006. "Equitable Models for the Stochastic Ground-Holding Problem Under Collaborative Decision Making," Transportation Science, INFORMS, vol. 40(2), pages 133-146, May.
    32. Hanif D. Sherali & Justin M. Hill & Michael V. McCrea & Antonio A. Trani, 2011. "Integrating Slot Exchange, Safety, Capacity, and Equity Mechanisms Within an Airspace Flow Program," Transportation Science, INFORMS, vol. 45(2), pages 271-284, May.
    33. Artiouchine, Konstantin & Baptiste, Philippe & Dürr, Christoph, 2008. "Runway sequencing with holding patterns," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1254-1266, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yun-xiang, Han & Xiao-qiong, Huang & Wu, Xi-ping, 2020. "Characterizing the performance of queuing networks in terminal control systems," Journal of Air Transport Management, Elsevier, vol. 85(C).
    2. Zhang, Yongxiang & D'Ariano, Andrea & He, Bisheng & Peng, Qiyuan, 2019. "Microscopic optimization model and algorithm for integrating train timetabling and track maintenance task scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 237-278.
    3. Pedro Jose Gudiel Pineda & Chao-Che Hsu & James J. H. Liou & Huai-Wei Lo, 2018. "A Hybrid Model for Aircraft Type Determination Following Flight Cancellation," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1147-1172, July.
    4. Murça, Mayara Condé Rocha, 2018. "Collaborative air traffic flow management: Incorporating airline preferences in rerouting decisions," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 97-107.
    5. Mogali, Jayanth Krishna & Barbulescu, Laura & Smith, Stephen F., 2021. "Efficient primal heuristic updates for the blocking job shop problem," European Journal of Operational Research, Elsevier, vol. 295(1), pages 82-101.
    6. Chen, Zebin & Li, Shukai & D’Ariano, Andrea & Yang, Lixing, 2022. "Real-time optimization for train regulation and stop-skipping adjustment strategy of urban rail transit lines," Omega, Elsevier, vol. 110(C).
    7. Zhang, Junfeng & Zhao, Pengli & Zhang, Yu & Dai, Ximei & Sui, Dong, 2020. "Criteria selection and multi-objective optimization of aircraft landing problem," Journal of Air Transport Management, Elsevier, vol. 82(C).
    8. Xu, Peijuan & Corman, Francesco & Peng, Qiyuan & Luan, Xiaojie, 2017. "A train rescheduling model integrating speed management during disruptions of high-speed traffic under a quasi-moving block system," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 638-666.
    9. Pohl, Maximilian & Kolisch, Rainer & Schiffer, Maximilian, 2021. "Runway scheduling during winter operations," Omega, Elsevier, vol. 102(C).
    10. Samà, Marcella & D'Ariano, Andrea & Corman, Francesco & Pacciarelli, Dario, 2018. "Coordination of scheduling decisions in the management of airport airspace and taxiway operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 398-411.
    11. Marcella Samà & Andrea D’Ariano & Konstantin Palagachev & Matthias Gerdts, 2019. "Integration methods for aircraft scheduling and trajectory optimization at a busy terminal manoeuvring area," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 641-681, September.
    12. Stéphane Dauzère-Pérès & Sigrid Lise Nonås, 2023. "An improved decision support model for scheduling production in an engineer-to-order manufacturer," 4OR, Springer, vol. 21(2), pages 247-300, June.
    13. Chen, Qingxin & Fu, Chenyi & Zhu, Ning & Ma, Shoufeng & He, Qiao-Chu, 2023. "A target-based optimization model for bike-sharing systems: From the perspective of service efficiency and equity," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 235-260.
    14. Rinaldi, Marco & Picarelli, Erika & D'Ariano, Andrea & Viti, Francesco, 2020. "Mixed-fleet single-terminal bus scheduling problem: Modelling, solution scheme and potential applications," Omega, Elsevier, vol. 96(C).
    15. Tibor Holczinger & Olivér Ősz & Máté Hegyháti, 2020. "Scheduling approach for on-site jobs of service providers," Flexible Services and Manufacturing Journal, Springer, vol. 32(4), pages 913-948, December.
    16. Cankaya, Burak & Topuz, Kazim & Delen, Dursun & Glassman, Aaron, 2023. "Evidence-based managerial decision-making with machine learning: The case of Bayesian inference in aviation incidents," Omega, Elsevier, vol. 120(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samà, Marcella & D'Ariano, Andrea & Corman, Francesco & Pacciarelli, Dario, 2018. "Coordination of scheduling decisions in the management of airport airspace and taxiway operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 398-411.
    2. Marcella Samà & Andrea D’Ariano & Konstantin Palagachev & Matthias Gerdts, 2019. "Integration methods for aircraft scheduling and trajectory optimization at a busy terminal manoeuvring area," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 641-681, September.
    3. Pohl, Maximilian & Kolisch, Rainer & Schiffer, Maximilian, 2021. "Runway scheduling during winter operations," Omega, Elsevier, vol. 102(C).
    4. Ng, K.K.H. & Lee, C.K.M. & Chan, Felix T.S. & Qin, Yichen, 2017. "Robust aircraft sequencing and scheduling problem with arrival/departure delay using the min-max regret approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 115-136.
    5. Julia Bennell & Mohammad Mesgarpour & Chris Potts, 2013. "Airport runway scheduling," Annals of Operations Research, Springer, vol. 204(1), pages 249-270, April.
    6. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    7. Daniel Karapetyan & Jason A. D. Atkin & Andrew J. Parkes & Juan Castro-Gutierrez, 2017. "Lessons from building an automated pre-departure sequencer for airports," Annals of Operations Research, Springer, vol. 252(2), pages 435-453, May.
    8. Jianan Yin & Yuanyuan Ma & Yuxin Hu & Ke Han & Suwan Yin & Hua Xie, 2021. "Delay, Throughput and Emission Tradeoffs in Airport Runway Scheduling with Uncertainty Considerations," Networks and Spatial Economics, Springer, vol. 21(1), pages 85-122, March.
    9. Bennell, Julia A. & Mesgarpour, Mohammad & Potts, Chris N., 2017. "Dynamic scheduling of aircraft landings," European Journal of Operational Research, Elsevier, vol. 258(1), pages 315-327.
    10. Ahmed Ghoniem & Hanif D. Sherali & Hojong Baik, 2014. "Enhanced Models for a Mixed Arrival-Departure Aircraft Sequencing Problem," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 514-530, August.
    11. Bo Xu & Weimin Ma & Hui Huang & Lei Yue, 2016. "Weighted Constrained Position Shift Model for Aircraft Arrival Sequencing and Scheduling Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-22, August.
    12. Lieder, Alexander & Briskorn, Dirk & Stolletz, Raik, 2015. "A dynamic programming approach for the aircraft landing problem with aircraft classes," European Journal of Operational Research, Elsevier, vol. 243(1), pages 61-69.
    13. Marie-Sklaerder Vié & Nicolas Zufferey & Roel Leus, 2022. "Aircraft landing planning under uncertain conditions," Journal of Scheduling, Springer, vol. 25(2), pages 203-228, April.
    14. Lieder, Alexander & Stolletz, Raik, 2016. "Scheduling aircraft take-offs and landings on interdependent and heterogeneous runways," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 167-188.
    15. Mogali, Jayanth Krishna & Barbulescu, Laura & Smith, Stephen F., 2021. "Efficient primal heuristic updates for the blocking job shop problem," European Journal of Operational Research, Elsevier, vol. 295(1), pages 82-101.
    16. Alexander S. Estes & Michael O. Ball, 2020. "Equity and Strength in Stochastic Integer Programming Models for the Dynamic Single Airport Ground-Holding Problem," Transportation Science, INFORMS, vol. 54(4), pages 944-955, July.
    17. Geert De Maere & Jason A. D. Atkin & Edmund K. Burke, 2018. "Pruning Rules for Optimal Runway Sequencing," Transportation Science, INFORMS, vol. 52(4), pages 898-916, August.
    18. Pohl, Maximilian & Artigues, Christian & Kolisch, Rainer, 2022. "Solving the time-discrete winter runway scheduling problem: A column generation and constraint programming approach," European Journal of Operational Research, Elsevier, vol. 299(2), pages 674-689.
    19. A R Brentnall & R C H Cheng, 2009. "Some effects of aircraft arrival sequence algorithms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 962-972, July.
    20. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:67:y:2017:i:c:p:81-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.