IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v231y2013i1p210-228.html
   My bibliography  Save this article

Workforce routing and scheduling for electricity network maintenance with downtime minimization

Author

Listed:
  • Goel, Asvin
  • Meisel, Frank

Abstract

We investigate a combined routing and scheduling problem for the maintenance of electricity networks. In electricity networks power lines must be regularly maintained to ensure a high quality of service. For safety reasons a power line must be physically disconnected from the network before maintenance work can be performed. After completing maintenance work the power line must be reconnected. Each maintenance job therefore consists of multiple tasks which must be performed at different locations in the network. The goal is to assign each task to a worker and to determine a schedule such that the downtimes of power lines and the travel effort of workers are minimized. For solving this problem, we combine a Large Neighborhood Search meta-heuristic with mathematical programming techniques. The method is evaluated on a large set of test instances which are derived from network data of a German electricity provider.

Suggested Citation

  • Goel, Asvin & Meisel, Frank, 2013. "Workforce routing and scheduling for electricity network maintenance with downtime minimization," European Journal of Operational Research, Elsevier, vol. 231(1), pages 210-228.
  • Handle: RePEc:eee:ejores:v:231:y:2013:i:1:p:210-228
    DOI: 10.1016/j.ejor.2013.05.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713004207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.05.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gonçalves, J.F. & Mendes, J.J.M. & Resende, M.G.C., 2008. "A genetic algorithm for the resource constrained multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1171-1190, September.
    2. Krüger, Doreen & Scholl, Armin, 2009. "A heuristic solution framework for the resource constrained (multi-)project scheduling problem with sequence-dependent transfer times," European Journal of Operational Research, Elsevier, vol. 197(2), pages 492-508, September.
    3. G Budai & D Huisman & R Dekker, 2006. "Scheduling preventive railway maintenance activities," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(9), pages 1035-1044, September.
    4. Gabriella Budai & Rommert Dekker & Robin P. Nicolai, 2008. "Maintenance and Production: A Review of Planning Models," Springer Series in Reliability Engineering, in: Complex System Maintenance Handbook, chapter 13, pages 321-344, Springer.
    5. David F. Percy, 2008. "Preventive Maintenance Models for Complex Systems," Springer Series in Reliability Engineering, in: Complex System Maintenance Handbook, chapter 8, pages 179-207, Springer.
    6. Shafiee, Mahmood & Chukova, Stefanka, 2013. "Maintenance models in warranty: A literature review," European Journal of Operational Research, Elsevier, vol. 229(3), pages 561-572.
    7. Michael Drexl, 2012. "Synchronization in Vehicle Routing---A Survey of VRPs with Multiple Synchronization Constraints," Transportation Science, INFORMS, vol. 46(3), pages 297-316, August.
    8. Kolisch, Rainer, 1996. "Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation," European Journal of Operational Research, Elsevier, vol. 90(2), pages 320-333, April.
    9. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    10. Goel, Asvin & Gruhn, Volker, 2008. "A General Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 191(3), pages 650-660, December.
    11. M. W. P. Savelsbergh & M. Sol, 1995. "The General Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 29(1), pages 17-29, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kheybari, Siamak & Bokaeyan, Amir & Yazd, Seyed Ali Naji Nasrabadi, 2020. "Efficient Harvesting of Saffron Using Integer Programming," International Journal of Agricultural Management and Development (IJAMAD), Iranian Association of Agricultural Economics, vol. 10(3), September.
    2. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    3. Si, Guojin & Xia, Tangbin & Gebraeel, Nagi & Wang, Dong & Pan, Ershun & Xi, Lifeng, 2022. "A reliability-and-cost-based framework to optimize maintenance planning and diverse-skilled technician routing for geographically distributed systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    4. Stiglic, Mitja & Agatz, Niels & Savelsbergh, Martin & Gradisar, Mirko, 2015. "The benefits of meeting points in ride-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 36-53.
    5. Li, Yulong & Zhang, Chi & Jia, Chuanzhou & Li, Xiaodong & Zhu, Yimin, 2019. "Joint optimization of workforce scheduling and routing for restoring a disrupted critical infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    6. Ehsan Pourjavad & Eman Almehdawe, 2022. "Optimization of the technician routing and scheduling problem for a telecommunication industry," Annals of Operations Research, Springer, vol. 315(1), pages 371-395, August.
    7. Nguyen, Ho Si Hung & Do, Phuc & Vu, Hai-Canh & Iung, Benoit, 2019. "Dynamic maintenance grouping and routing for geographically dispersed production systems," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 392-404.
    8. Schönberger, Jörn, 2017. "Implicit time windows and multi-commodity mixed-fleet vehicle routing," Discussion Papers 1/2017, Technische Universität Dresden, "Friedrich List" Faculty of Transport and Traffic Sciences, Institute of Transport and Economics.
    9. Si, Guojin & Xia, Tangbin & Zhu, Ying & Du, Shichang & Xi, Lifeng, 2019. "Triple-level opportunistic maintenance policy for leasehold service network of multi-location production lines," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    10. Stiglic, M. & Agatz, N.A.H. & Savelsbergh, M.W.P. & Gradisar, M., 2015. "The Benefits of Meeting Points in Ride-sharing Systems," ERIM Report Series Research in Management ERS-2015-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    11. Guastaroba, G. & Côté, J.-F. & Coelho, L.C., 2021. "The Multi-Period Workforce Scheduling and Routing Problem," Omega, Elsevier, vol. 102(C).
    12. Drent, Collin & Keizer, Minou Olde & Houtum, Geert-Jan van, 2020. "Dynamic dispatching and repositioning policies for fast-response service networks," European Journal of Operational Research, Elsevier, vol. 285(2), pages 583-598.
    13. Urbani, Michele & Brunelli, Matteo & Punkka, Antti, 2023. "An approach for bi-objective maintenance scheduling on a networked system with limited resources," European Journal of Operational Research, Elsevier, vol. 305(1), pages 101-113.
    14. López-Santana, Eduyn & Akhavan-Tabatabaei, Raha & Dieulle, Laurence & Labadie, Nacima & Medaglia, Andrés L., 2016. "On the combined maintenance and routing optimization problem," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 199-214.
    15. Funke, Julia & Kopfer, Herbert, 2016. "A model for a multi-size inland container transportation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 70-85.
    16. Paraskevopoulos, Dimitris C. & Laporte, Gilbert & Repoussis, Panagiotis P. & Tarantilis, Christos D., 2017. "Resource constrained routing and scheduling: Review and research prospects," European Journal of Operational Research, Elsevier, vol. 263(3), pages 737-754.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paraskevopoulos, Dimitris C. & Laporte, Gilbert & Repoussis, Panagiotis P. & Tarantilis, Christos D., 2017. "Resource constrained routing and scheduling: Review and research prospects," European Journal of Operational Research, Elsevier, vol. 263(3), pages 737-754.
    2. Browning, Tyson R. & Yassine, Ali A., 2010. "Resource-constrained multi-project scheduling: Priority rule performance revisited," International Journal of Production Economics, Elsevier, vol. 126(2), pages 212-228, August.
    3. Adhau, Sunil & Mittal, M.L. & Mittal, Abhinav, 2013. "A multi-agent system for decentralized multi-project scheduling with resource transfers," International Journal of Production Economics, Elsevier, vol. 146(2), pages 646-661.
    4. Kadri, Roubila Lilia & Boctor, Fayez F., 2018. "An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case," European Journal of Operational Research, Elsevier, vol. 265(2), pages 454-462.
    5. Bredael, Dries & Vanhoucke, Mario, 2023. "Multi-project scheduling: A benchmark analysis of metaheuristic algorithms on various optimisation criteria and due dates," European Journal of Operational Research, Elsevier, vol. 308(1), pages 54-75.
    6. Changjiu Li & Yong Zhang & Xichao Su & Xinwei Wang, 2022. "An Improved Optimization Algorithm for Aeronautical Maintenance and Repair Task Scheduling Problem," Mathematics, MDPI, vol. 10(20), pages 1-25, October.
    7. M. Angélica Salazar-Aguilar & Vincent Boyer & Romeo Sanchez Nigenda & Iris A. Martínez-Salazar, 2019. "The sales force sizing problem with multi-period workload assignments, and service time windows," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 199-218, March.
    8. Bhoopalam, Anirudh Kishore & Agatz, Niels & Zuidwijk, Rob, 2018. "Planning of truck platoons: A literature review and directions for future research," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 212-228.
    9. Raúl Mencía & Carlos Mencía, 2021. "One-Machine Scheduling with Time-Dependent Capacity via Efficient Memetic Algorithms," Mathematics, MDPI, vol. 9(23), pages 1-24, November.
    10. Wuliang Peng & Jiali lin & Jingwen Zhang & Liangwei Chen, 2022. "A bi-objective hierarchical program scheduling problem and its solution based on NSGA-III," Annals of Operations Research, Springer, vol. 308(1), pages 389-414, January.
    11. Michael Patriksson & Ann-Brith Strömberg & Adam Wojciechowski, 2015. "The stochastic opportunistic replacement problem, part II: a two-stage solution approach," Annals of Operations Research, Springer, vol. 224(1), pages 51-75, January.
    12. Mohsen Emadikhiav & David Bergman & Robert Day, 2020. "Consistent Routing and Scheduling with Simultaneous Pickups and Deliveries," Production and Operations Management, Production and Operations Management Society, vol. 29(8), pages 1937-1955, August.
    13. Ben Issa, Samer & Patterson, Raymond A. & Tu, Yiliu, 2021. "Solving resource-constrained multi-project environment under different activity assumptions," International Journal of Production Economics, Elsevier, vol. 232(C).
    14. Bernardo F. Almeida & Isabel Correia & Francisco Saldanha-da-Gama, 2018. "A biased random-key genetic algorithm for the project scheduling problem with flexible resources," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 283-308, July.
    15. Rais, A. & Alvelos, F. & Carvalho, M.S., 2014. "New mixed integer-programming model for the pickup-and-delivery problem with transshipment," European Journal of Operational Research, Elsevier, vol. 235(3), pages 530-539.
    16. Luise-Sophie Hoffmann & Carolin Kellenbrink & Stefan Helber, 2020. "Simultaneous structuring and scheduling of multiple projects with flexible project structures," Journal of Business Economics, Springer, vol. 90(5), pages 679-711, June.
    17. Moosavi, Amirhossein & Ozturk, Onur & Patrick, Jonathan, 2022. "Staff scheduling for residential care under pandemic conditions: The case of COVID-19," Omega, Elsevier, vol. 112(C).
    18. Fündeling, C.-U. & Trautmann, N., 2010. "A priority-rule method for project scheduling with work-content constraints," European Journal of Operational Research, Elsevier, vol. 203(3), pages 568-574, June.
    19. Jens Poppenborg & Sigrid Knust, 2016. "Modeling and optimizing the evacuation of hospitals based on the MRCPSP with resource transfers," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 349-380, September.
    20. Farzaneh Karami & Wim Vancroonenburg & Greet Vanden Berghe, 2020. "A periodic optimization approach to dynamic pickup and delivery problems with time windows," Journal of Scheduling, Springer, vol. 23(6), pages 711-731, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:231:y:2013:i:1:p:210-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.