IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v37y2017i3d10.1007_s10669-017-9638-5.html
   My bibliography  Save this article

Effect of crude oil carbon accounting decisions on meeting global climate budgets

Author

Listed:
  • Leslie S. Abrahams

    (Carnegie Mellon University
    Carnegie Mellon University)

  • Constantine Samaras

    (Carnegie Mellon University)

  • W. Michael Griffin

    (Carnegie Mellon University)

  • H. Scott Matthews

    (Carnegie Mellon University
    Carnegie Mellon University)

Abstract

The Intergovernmental Panel on Climate Change quantified a cumulative remaining carbon budget beyond which there is a high likelihood global average temperatures will increase more than 2 °C above preindustrial temperature. While there is global participation in mitigation efforts, there is little global collaboration to cooperatively mitigate emissions. Instead, countries have been acting as individual agents with independent emission reduction objectives. However, such asymmetric unilateral climate policies create the opportunity for carbon leakage resulting from the shift in embodied carbon emissions within trade networks. In this analysis, we use an optimization-based model of the global crude trade as a case study to demonstrate the importance of a cooperative, system-level approach to climate policy in order to most effectively, efficiently, and equitably achieve carbon mitigation objectives. To do this, we first characterize the cost and life cycle greenhouse gas emissions associated with the 2014 crude production and consumption system by aggregating multiple data sources and developing a balanced trade matrix. We then optimize this network to demonstrate the potential for carbon mitigation through more efficient use of crude resources. Finally, we implement a global carbon cap on total annual crude emissions. We find that such a cap would require crude consumption to drop from 4.2 gigatons (Gt) to 1.1 Gt. However, if each country had an individual carbon allocation in addition to the global cap consistent with the nationally determined contribution limits resulting from the 2015 United Nations Climate Change Conference, allowable consumption would further decrease to approximately 770 million metric tonnes. Additionally, the carbon accounting method used to assign responsibility for embodied carbon emissions associated with the traded crude further influences allowable production and consumption for each country. The simplified model presented here highlights how global cooperation and a system-level cooperative approach could guide climate policy efforts to be more cost effective and equitable, while reducing the leakage potential resulting from shifting trade patterns of embodied carbon emissions. Additionally, it demonstrates how the spatial distribution of crude consumption and production patterns change under a global carbon cap given various carbon accounting strategies.

Suggested Citation

  • Leslie S. Abrahams & Constantine Samaras & W. Michael Griffin & H. Scott Matthews, 2017. "Effect of crude oil carbon accounting decisions on meeting global climate budgets," Environment Systems and Decisions, Springer, vol. 37(3), pages 261-275, September.
  • Handle: RePEc:spr:envsyd:v:37:y:2017:i:3:d:10.1007_s10669-017-9638-5
    DOI: 10.1007/s10669-017-9638-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-017-9638-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-017-9638-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaufmann, Robert K., 2016. "Price differences among crude oils: The private costs of supply disruptions," Energy Economics, Elsevier, vol. 56(C), pages 1-8.
    2. Luderer, Gunnar & Bertram, Christoph & Calvin, Katherine & De Cian, Enrica & Kriegler, Elmar, 2015. "Implications of Weak Near-term Climate Policies on Long-term Mitigation Pathways," Climate Change and Sustainable Development 197537, Fondazione Eni Enrico Mattei (FEEM).
    3. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    4. Christophe McGlade & Paul Ekins, 2015. "The geographical distribution of fossil fuels unused when limiting global warming to 2 °C," Nature, Nature, vol. 517(7533), pages 187-190, January.
    5. Jutta Brunn�e & Charlotte Streck, 2013. "The UNFCCC as a negotiation forum: towards common but more differentiated responsibilities," Climate Policy, Taylor & Francis Journals, vol. 13(5), pages 589-607, September.
    6. Weber, Christopher L. & Peters, Glen P., 2009. "Climate change policy and international trade: Policy considerations in the US," Energy Policy, Elsevier, vol. 37(2), pages 432-440, February.
    7. Susan Spierre Clark & Thomas P. Seager & Evan Selinger, 2015. "A development-based approach to global climate policy," Environment Systems and Decisions, Springer, vol. 35(1), pages 1-10, March.
    8. Mikel González-Eguino & Iñigo Capellán-Pérez & Iñaki Arto & Alberto Ansuategi & Anil Markandya, 2017. "Industrial and terrestrial carbon leakage under climate policy fragmentation," Climate Policy, Taylor & Francis Journals, vol. 17(0), pages 148-169, June.
    9. Reboredo, Juan C., 2011. "How do crude oil prices co-move?: A copula approach," Energy Economics, Elsevier, vol. 33(5), pages 948-955, September.
    10. Otto, Sander A.C. & Gernaat, David E.H.J. & Isaac, Morna & Lucas, Paul L. & van Sluisveld, Mariësse A.E. & van den Berg, Maarten & van Vliet, Jasper & van Vuuren, Detlef P., 2015. "Impact of fragmented emission reduction regimes on the energy market and on CO2 emissions related to land use: A case study with China and the European Union as first movers," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 220-229.
    11. Anders Hammer Strømman & Edgar G. Hertwich & Faye Duchin, 2009. "Shifting Trade Patterns as a Means of Reducing Global Carbon Dioxide Emissions," Journal of Industrial Ecology, Yale University, vol. 13(1), pages 38-57, February.
    12. Wyckoff, Andrew W. & Roop, Joseph M., 1994. "The embodiment of carbon in imports of manufactured products : Implications for international agreements on greenhouse gas emissions," Energy Policy, Elsevier, vol. 22(3), pages 187-194, March.
    13. Arroyo-Currás, Tabaré & Bauer, Nico & Kriegler, Elmar & Schwanitz, Valeria Jana & Luderer, Gunnar & Aboumahboub, Tino & Giannousakis, Anastasis & Hilaire, Jérôme, 2015. "Carbon leakage in a fragmented climate regime: The dynamic response of global energy markets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 192-203.
    14. Kaufmann, Robert K. & Banerjee, Shayan, 2014. "A unified world oil market: Regions in physical, economic, geographic, and political space," Energy Policy, Elsevier, vol. 74(C), pages 235-242.
    15. Peter Frumhoff & Richard Heede & Naomi Oreskes, 2015. "The climate responsibilities of industrial carbon producers," Climatic Change, Springer, vol. 132(2), pages 157-171, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zachary A. Collier & James H. Lambert & Igor Linkov, 2017. "Advances in life cycle analysis, econometrics, optimization, R&D policy, and health decision making," Environment Systems and Decisions, Springer, vol. 37(3), pages 241-242, September.
    2. Alexandre Milovanoff & I. Daniel Posen & Heather L. MacLean, 2021. "Quantifying environmental impacts of primary aluminum ingot production and consumption : A trade‐linked multilevel life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 67-78, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kriegler, Elmar & Riahi, Keywan & Bauer, Nico & Schwanitz, Valeria Jana & Petermann, Nils & Bosetti, Valentina & Marcucci, Adriana & Otto, Sander & Paroussos, Leonidas & Rao, Shilpa & Arroyo Currás, T, 2015. "Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 24-44.
    2. Zhang, Dayong & Ji, Qiang & Kutan, Ali M., 2019. "Dynamic transmission mechanisms in global crude oil prices: Estimation and implications," Energy, Elsevier, vol. 175(C), pages 1181-1193.
    3. Klein, Tony, 2018. "Trends and contagion in WTI and Brent crude oil spot and futures markets - The role of OPEC in the last decade," Energy Economics, Elsevier, vol. 75(C), pages 636-646.
    4. Tobias Nielsen & Nicolai Baumert & Astrid Kander & Magnus Jiborn & Viktoras Kulionis, 2021. "The risk of carbon leakage in global climate agreements," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 21(2), pages 147-163, June.
    5. Pan, Wenqi & Kim, Man-Keun & Ning, Zhuo & Yang, Hongqiang, 2020. "Carbon leakage in energy/forest sectors and climate policy implications using meta-analysis," Forest Policy and Economics, Elsevier, vol. 115(C).
    6. Misato Sato, 2014. "Embodied Carbon In Trade: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 831-861, December.
    7. Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
    8. Klein, Tony, 2018. "Trends and Contagion in WTI and Brent Crude Oil Spot and Futures Markets - The Role of OPEC in the last Decade," QBS Working Paper Series 2018/05, Queen's University Belfast, Queen's Business School.
    9. Hong Li & Yanlin Shi, 2022. "Robust information share measures with an application on the international crude oil markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(4), pages 555-579, April.
    10. Hjort, Ingrid, 2016. "Potential Climate Risks in Financial Markets: A Literature Overview," Memorandum 01/2016, Oslo University, Department of Economics.
    11. Banie Naser Outchiri & Jie He, 2020. "Technical gap, trade partners and product mix evolution: how trading with China affects global CO2 emissions," Cahiers de recherche 20-07, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    12. Wu, Libo & Zhou, Ying & Qian, Haoqi, 2022. "Global actions under the Paris agreement: Tracing the carbon leakage flow and pursuing countermeasures," Energy Economics, Elsevier, vol. 106(C).
    13. Luo, Jiawen & Klein, Tony & Walther, Thomas & Ji, Qiang, 2021. "Forecasting Realized Volatility of Crude Oil Futures Prices based on Machine Learning," QBS Working Paper Series 2021/04, Queen's University Belfast, Queen's Business School.
    14. Kaufmann, Robert K., 2016. "Price differences among crude oils: The private costs of supply disruptions," Energy Economics, Elsevier, vol. 56(C), pages 1-8.
    15. Banerjee, Suvajit, 2021. "Conjugation of border and domestic carbon adjustment and implications under production and consumption-based accounting of India's National Emission Inventory: A recursive dynamic CGE analysis," Structural Change and Economic Dynamics, Elsevier, vol. 57(C), pages 68-86.
    16. Joaquín Bernal-Ramírez & Jair Ojeda-Joya & Camila Agudelo-Rivera & Felipe Clavijo-Ramírez & Carolina Durana-Ángel & Clark Granger-Castaño & Daniel Osorio-Rodríguez & Daniel Parra-Amado & José Pulido &, 2022. "Impacto macroeconómico del cambio climático en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, issue 102, pages 1-62, July.
    17. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    18. van Asselt, Harro & Brewer, Thomas, 2010. "Addressing competitiveness and leakage concerns in climate policy: An analysis of border adjustment measures in the US and the EU," Energy Policy, Elsevier, vol. 38(1), pages 42-51, January.
    19. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    20. Sun, Xiaolei & Liu, Chang & Wang, Jun & Li, Jianping, 2020. "Assessing the extreme risk spillovers of international commodities on maritime markets: A GARCH-Copula-CoVaR approach," International Review of Financial Analysis, Elsevier, vol. 68(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:37:y:2017:i:3:d:10.1007_s10669-017-9638-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.