IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i1d10.1007_s10668-020-00607-2.html
   My bibliography  Save this article

Risk management of hydropower projects for sustainable development: a review

Author

Listed:
  • Anuja Shaktawat

    (National Institute of Technology)

  • Shelly Vadhera

    (National Institute of Technology)

Abstract

Hydropower projects are site specific which require huge investment and have long gestation periods. These characteristics expose hydropower projects to various uncertainties and risks such as economic, environmental, social, geological, regulatory, political, technological, financial, climate, natural, and safety. These risk factors, if not managed in time, lead to schedule and cost overruns which ultimately cause delays in the availability of power that too at a higher cost and in extreme cases lead to project failures. Sustainability has also become a critical and unavoidable issue in hydropower development due to associated environmental and social impacts. Sustainable development is related to techno-economic development along with preserving the environment. Hence, to assure this equity and manage the critical risks more efficiently, there arises a strong need for comprehensive risk management in hydropower projects. This paper presents a systematic review of risk management in hydropower projects with a specific focus on sustainable development. The paper discusses various risk assessment techniques and recommends sensitivity analysis as a primary method to evaluate the significant risk factors. The construction phase of hydropower projects is identified as the most critical phase associated with uncertainties and involves considerable cost. Thus, the review highlights the need for incorporation of risk analysis in the cost estimation process and the provision for finance with sufficient margin on the ex-ante base cost to account for uncertainties, especially for developing countries. For future research, the use of fuzzy hybridized with artificial neural network and genetic algorithm is suggested for risk assessment of hydropower projects.

Suggested Citation

  • Anuja Shaktawat & Shelly Vadhera, 2021. "Risk management of hydropower projects for sustainable development: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 45-76, January.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:1:d:10.1007_s10668-020-00607-2
    DOI: 10.1007/s10668-020-00607-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00607-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00607-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Batool, Aysha & Abbas, Faisal, 2017. "Reasons for delay in selected hydro-power projects in Khyber Pakhtunkhwa (KPK), Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 196-204.
    2. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    3. Awojobi, Omotola & Jenkins, Glenn P., 2015. "Were the hydro dams financed by the World Bank from 1976 to 2005 worthwhile?," Energy Policy, Elsevier, vol. 86(C), pages 222-232.
    4. Pang, Mingyue & Zhang, Lixiao & Ulgiati, Sergio & Wang, Changbo, 2015. "Ecological impacts of small hydropower in China: Insights from an emergy analysis of a case plant," Energy Policy, Elsevier, vol. 76(C), pages 112-122.
    5. Sarkar, Amin U. & Karagöz, Serkan, 1995. "Sustainable development of hydroelectric power," Energy, Elsevier, vol. 20(10), pages 977-981.
    6. Onat, Nevzat & Bayar, Haydar, 2010. "The sustainability indicators of power production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3108-3115, December.
    7. Hall, Anthony & Branford, Sue, 2012. "Development, dams and Dilma: the saga of Belo Monte," LSE Research Online Documents on Economics 46393, London School of Economics and Political Science, LSE Library.
    8. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Global threats to human water security and river biodiversity," Nature, Nature, vol. 467(7315), pages 555-561, September.
    9. Afgan, Naim H. & Carvalho, Maria G. & Hovanov, Nikolai V., 2000. "Energy system assessment with sustainability indicators," Energy Policy, Elsevier, vol. 28(9), pages 603-612, July.
    10. Gallego Carrera, Diana & Mack, Alexander, 2010. "Sustainability assessment of energy technologies via social indicators: Results of a survey among European energy experts," Energy Policy, Elsevier, vol. 38(2), pages 1030-1039, February.
    11. Shou Qing Wang & Mohammed Fadhil Dulaimi & Muhammad Yousuf Aguria, 2004. "Risk management framework for construction projects in developing countries," Construction Management and Economics, Taylor & Francis Journals, vol. 22(3), pages 237-252.
    12. Awojobi, Omotola & Jenkins, Glenn P., 2016. "Managing the cost overrun risks of hydroelectric dams: An application of reference class forecasting techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 19-32.
    13. Morimoto, Risako, 2013. "Incorporating socio-environmental considerations into project assessment models using multi-criteria analysis: A case study of Sri Lankan hydropower projects," Energy Policy, Elsevier, vol. 59(C), pages 643-653.
    14. Pereira, Edinaldo José da Silva & Pinho, João Tavares & Galhardo, Marcos André Barros & Macêdo, Wilson Negrão, 2014. "Methodology of risk analysis by Monte Carlo Method applied to power generation with renewable energy," Renewable Energy, Elsevier, vol. 69(C), pages 347-355.
    15. Klimpt, Jean-Etienne & Rivero, Cristina & Puranen, Hannu & Koch, Frans, 2002. "Recommendations for sustainable hydroelectric development," Energy Policy, Elsevier, vol. 30(14), pages 1305-1312, November.
    16. Maxim, Alexandru, 2014. "Sustainability assessment of electricity generation technologies using weighted multi-criteria decision analysis," Energy Policy, Elsevier, vol. 65(C), pages 284-297.
    17. Bacon, Robert W & Besant-Jones, John E, 1998. "Estimating construction costs and schedules: Experience with power generation projects in developing countries," Energy Policy, Elsevier, vol. 26(4), pages 317-333, March.
    18. Bent Flyvbjerg, 2007. "Policy and Planning for Large-Infrastructure Projects: Problems, Causes, Cures," Environment and Planning B, , vol. 34(4), pages 578-597, August.
    19. Rolf Golombek & Sverre Kittelsen & Ingjerd Haddeland, 2012. "Climate change: impacts on electricity markets in Western Europe," Climatic Change, Springer, vol. 113(2), pages 357-370, July.
    20. Sovacool, Benjamin K. & Dhakal, Saroj & Gippner, Olivia & Bambawale, Malavika Jain, 2011. "Halting hydro: A review of the socio-technical barriers to hydroelectric power plants in Nepal," Energy, Elsevier, vol. 36(5), pages 3468-3476.
    21. Darmawi, & Sipahutar, Riman & Bernas, Siti Masreah & Imanuddin, Momon Sodik, 2013. "Renewable energy and hydropower utilization tendency worldwide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 213-215.
    22. Capik, Mehmet & Osman Yılmaz, Ali & Cavusoglu, İbrahim, 2012. "Hydropower for sustainable energy development in Turkey: The small hydropower case of the Eastern Black Sea Region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6160-6172.
    23. Steffen, Bjarne, 2012. "Prospects for pumped-hydro storage in Germany," Energy Policy, Elsevier, vol. 45(C), pages 420-429.
    24. Byman Hamududu & Aanund Killingtveit, 2012. "Assessing Climate Change Impacts on Global Hydropower," Energies, MDPI, vol. 5(2), pages 1-18, February.
    25. Kumar, Deepak & Katoch, S.S., 2015. "Sustainability suspense of small hydropower projects: A study from western Himalayan region of India," Renewable Energy, Elsevier, vol. 76(C), pages 220-233.
    26. Sternberg, R., 2008. "Hydropower: Dimensions of social and environmental coexistence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1588-1621, August.
    27. Zhang, Sufang & Andrews-Speed, Philip & Perera, Pradeep, 2015. "The evolving policy regime for pumped storage hydroelectricity in China: A key support for low-carbon energy," Applied Energy, Elsevier, vol. 150(C), pages 15-24.
    28. Tang, Wenzhe & Li, Zhuoyu & Qiang, Maoshan & Wang, Shuli & Lu, Youmei, 2013. "Risk management of hydropower development in China," Energy, Elsevier, vol. 60(C), pages 316-324.
    29. Vučijak, B. & Kupusović, T. & Midžić-Kurtagić, S. & Ćerić, A., 2013. "Applicability of multicriteria decision aid to sustainable hydropower," Applied Energy, Elsevier, vol. 101(C), pages 261-267.
    30. Ansar, Atif & Flyvbjerg, Bent & Budzier, Alexander & Lunn, Daniel, 2014. "Should we build more large dams? The actual costs of hydropower megaproject development," Energy Policy, Elsevier, vol. 69(C), pages 43-56.
    31. Supriyasilp, Thanaporn & Pongput, Kobkiat & Boonyasirikul, Thana, 2009. "Hydropower development priority using MCDM method," Energy Policy, Elsevier, vol. 37(5), pages 1866-1875, May.
    32. Caralis, G. & Papantonis, D. & Zervos, A., 2012. "The role of pumped storage systems towards the large scale wind integration in the Greek power supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2558-2565.
    33. Troldborg, Mads & Heslop, Simon & Hough, Rupert L., 2014. "Assessing the sustainability of renewable energy technologies using multi-criteria analysis: Suitability of approach for national-scale assessments and associated uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1173-1184.
    34. Callegari, C. & Szklo, A. & Schaeffer, R., 2018. "Cost overruns and delays in energy megaprojects: How big is big enough?," Energy Policy, Elsevier, vol. 114(C), pages 211-220.
    35. Afgan, Naim H. & Carvalho, Maria G., 2002. "Multi-criteria assessment of new and renewable energy power plants," Energy, Elsevier, vol. 27(8), pages 739-755.
    36. Kumar, Deepak & Katoch, S.S., 2014. "Sustainability indicators for run of the river (RoR) hydropower projects in hydro rich regions of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 101-108.
    37. Balat, Havva, 2007. "A renewable perspective for sustainable energy development in Turkey: The case of small hydropower plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 2152-2165, December.
    38. Weiyao Tang & Zongmin Li & Yan Tu, 2018. "Sustainability Risk Evaluation for Large-Scale Hydropower Projects with Hybrid Uncertainty," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    39. Ayodele, T.R. & Ogunjuyigbe, A.S.O., 2015. "Mitigation of wind power intermittency: Storage technology approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 447-456.
    40. Egre, Dominique & Milewski, Joseph C., 2002. "The diversity of hydropower projects," Energy Policy, Elsevier, vol. 30(14), pages 1225-1230, November.
    41. Fang, Chao & Marle, Franck & Zio, Enrico & Bocquet, Jean-Claude, 2012. "Network theory-based analysis of risk interactions in large engineering projects," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 1-10.
    42. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    43. Rosso, M. & Bottero, M. & Pomarico, S. & La Ferlita, S. & Comino, E., 2014. "Integrating multicriteria evaluation and stakeholders analysis for assessing hydropower projects," Energy Policy, Elsevier, vol. 67(C), pages 870-881.
    44. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    45. Frey, Gary W. & Linke, Deborah M., 2002. "Hydropower as a renewable and sustainable energy resource meeting global energy challenges in a reasonable way," Energy Policy, Elsevier, vol. 30(14), pages 1261-1265, November.
    46. Yüksel, Ibrahim, 2010. "Hydropower for sustainable water and energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 462-469, January.
    47. Sherong Zhang & Bo Sun & Lei Yan & Chao Wang, 2013. "Risk identification on hydropower project using the IAHP and extension of TOPSIS methods under interval-valued fuzzy environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 359-373, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sagar Adhikari & Jirakiattikul Sopin & Kua-Anan Techato & Bibek Kumar Mudbhari, 2023. "A Systematic Review on Investment Risks in Hydropower to Developing Sustainable Renewable Energy Systems," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 222-230, March.
    2. Yakun Zhang & Wenzhe Tang & Colin F. Duffield & Lihai Zhang & Felix Kin Peng Hui, 2021. "Environment Management of Hydropower Development: A Case Study," Energies, MDPI, vol. 14(7), pages 1-12, April.
    3. Bogumił Nowak & Anna Andrzejak & Grzegorz Filipiak & Mariusz Ptak & Mariusz Sojka, 2022. "Assessment of the Impact of Flow Changes and Water Management Rules in the Dam Reservoir on Energy Generation at the Jeziorsko Hydropower Plant," Energies, MDPI, vol. 15(20), pages 1-19, October.
    4. B. Igliński & M. Skrzatek & W. Kujawski & M. Cichosz & R. Buczkowski, 2022. "SWOT analysis of renewable energy sector in Mazowieckie Voivodeship (Poland): current progress, prospects and policy implications," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 77-111, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tahseen, Samiha & Karney, Bryan W., 2017. "Reviewing and critiquing published approaches to the sustainability assessment of hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 225-234.
    2. Kumar, Deepak & Katoch, S.S., 2014. "Sustainability indicators for run of the river (RoR) hydropower projects in hydro rich regions of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 101-108.
    3. Yakun Zhang & Wenzhe Tang & Colin F. Duffield & Lihai Zhang & Felix Kin Peng Hui, 2021. "Environment Management of Hydropower Development: A Case Study," Energies, MDPI, vol. 14(7), pages 1-12, April.
    4. Luthra, Sunil & Mangla, Sachin Kumar & Kharb, Ravinder K., 2015. "Sustainable assessment in energy planning and management in Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 58-73.
    5. Kelly-Richards, Sarah & Silber-Coats, Noah & Crootof, Arica & Tecklin, David & Bauer, Carl, 2017. "Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom," Energy Policy, Elsevier, vol. 101(C), pages 251-264.
    6. Weiyao Tang & Zongmin Li & Yan Tu, 2018. "Sustainability Risk Evaluation for Large-Scale Hydropower Projects with Hybrid Uncertainty," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    7. Anissa Frini & Sarah Benamor, 2018. "Making Decisions in a Sustainable Development Context: A State-of-the-Art Survey and Proposal of a Multi-period Single Synthesizing Criterion Approach," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 341-385, August.
    8. Mainali, Brijesh & Silveira, Semida, 2015. "Using a sustainability index to assess energy technologies for rural electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1351-1365.
    9. Liu, Gang, 2014. "Development of a general sustainability indicator for renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 611-621.
    10. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    11. Berjawi, A.E.H. & Walker, S.L. & Patsios, C. & Hosseini, S.H.R., 2021. "An evaluation framework for future integrated energy systems: A whole energy systems approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    12. Jelena Cvijović & Vladimir Obradović & Marija Todorović, 2021. "Stakeholder Management and Project Sustainability—A Throw of the Dice," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    13. Năstase, Gabriel & Şerban, Alexandru & Năstase, Alina Florentina & Dragomir, George & Brezeanu, Alin Ionuţ & Iordan, Nicolae Fani, 2017. "Hydropower development in Romania. A review from its beginnings to the present," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 297-312.
    14. Urošević, Branka Gvozdenac & Marinović, Budimirka, 2021. "Ranking construction of small hydro power plants using multi-criteria decision analysis," Renewable Energy, Elsevier, vol. 172(C), pages 1174-1183.
    15. Colla, Martin & Ioannou, Anastasia & Falcone, Gioia, 2020. "Critical review of competitiveness indicators for energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    16. Jenkins, G. & Olasehinde-Williams, G. & Baurzhan, S., 2022. "Is there a net economic loss from employing reference class forecasting in the appraisal of hydropower projects?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    17. Liu, Jian & Zuo, Jian & Sun, Zhiyu & Zillante, George & Chen, Xianming, 2013. "Sustainability in hydropower development—A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 230-237.
    18. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    19. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    20. Gunnarsdottir, I. & Davidsdottir, B. & Worrell, E. & Sigurgeirsdottir, S., 2021. "Sustainable energy development: History of the concept and emerging themes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:1:d:10.1007_s10668-020-00607-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.