IDEAS home Printed from https://ideas.repec.org/a/spr/ediscc/v2y2018i3d10.1007_s41885-018-0027-4.html
   My bibliography  Save this article

A Heuristic Approach to the Estimation of Key Parameters for a Monthly, Recursive, Dynamic CGE Model

Author

Listed:
  • Masato Yamazaki

    (Nagoya University)

  • Atsushi Koike

    (Kobe University)

  • Yoshinori Sone

    (Nagoya University)

Abstract

As economic losses brought about by natural disasters mount, assessing the economic impact of a possible future natural disaster is becoming increasingly important. A computable general equilibrium (CGE) model and an input-output (I-O) model are strong candidates for performing such an assessment. Even though a CGE model is more comprehensive and flexible than an I-O model, the CGE approach is often subject to criticism because key parameters are often not appropriately estimated. The purpose of this study is to calibrate two sets of key substitution parameters: the elasticity of substitution between labor and capital services and the elasticity of substitution among like goods of different origins, using a monthly, recursive, dynamic CGE model. For the calibration, this study employs a heuristic method, in which the model’s substitution parameters are adjusted to reproduce actual production losses from the 2011 Great East Japan Earthquake. In addition, we test whether the CGE model can reproduce the actual economic recovery from this earthquake. Overall, we find that our model does reproduce the disaster’s economic dynamics of recovery, as well as its short-term economic impact.

Suggested Citation

  • Masato Yamazaki & Atsushi Koike & Yoshinori Sone, 2018. "A Heuristic Approach to the Estimation of Key Parameters for a Monthly, Recursive, Dynamic CGE Model," Economics of Disasters and Climate Change, Springer, vol. 2(3), pages 283-301, October.
  • Handle: RePEc:spr:ediscc:v:2:y:2018:i:3:d:10.1007_s41885-018-0027-4
    DOI: 10.1007/s41885-018-0027-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41885-018-0027-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s41885-018-0027-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stéphane Hallegatte & Valentin Przyluski, 2010. "The Economics of Natural Disasters," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 11(02), pages 14-24, July.
    2. Yasuhide Okuyama & Joost R. Santos, 2014. "Disaster Impact And Input--Output Analysis," Economic Systems Research, Taylor & Francis Journals, vol. 26(1), pages 1-12, March.
    3. Adam Rose & Gauri-Shankar Guha, 2004. "Computable General Equilibrium Modeling of Electric Utility Lifeline Losses from Earthquakes," Advances in Spatial Science, in: Yasuhide Okuyama & Stephanie E. Chang (ed.), Modeling Spatial and Economic Impacts of Disasters, chapter 7, pages 119-141, Springer.
    4. Alistair Munro & Shunsuke Managi, 2017. "Going Back: Radiation and Intentions to Return amongst Households Evacuated after the Great Tohoku Earthquake," Economics of Disasters and Climate Change, Springer, vol. 1(1), pages 77-93, June.
    5. Wittwer, Glyn & Griffith, Marnie, 2010. "Closing the factory doors until better times: CGE modelling of drought using a theory of excess capacity," 2010 Conference (54th), February 10-12, 2010, Adelaide, Australia 59263, Australian Agricultural and Resource Economics Society.
    6. Carolyn Fischer & Alan K. Fox, 2007. "Output-Based Allocation of Emissions Permits for Mitigating Tax and Trade Interactions," Land Economics, University of Wisconsin Press, vol. 83(4), pages 575-599.
    7. Adam Rose & Shu‐Yi Liao, 2005. "Modeling Regional Economic Resilience to Disasters: A Computable General Equilibrium Analysis of Water Service Disruptions," Journal of Regional Science, Wiley Blackwell, vol. 45(1), pages 75-112, February.
    8. Yasuhide Okuyama, 2015. "How shaky was the regional economy after the 1995 Kobe earthquake? A multiplicative decomposition analysis of disaster impact," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 55(2), pages 289-312, December.
    9. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    10. Chris M. Alaouze & John S. Marsden & John Zeitsch, 1977. "Estimates of the Elasticity of Substitution Between Imported and Domestically Produced Commodities at the Four Digit ASIC Level," Centre of Policy Studies/IMPACT Centre Working Papers o-11, Victoria University, Centre of Policy Studies/IMPACT Centre.
    11. Gallaway, Michael P. & McDaniel, Christine A. & Rivera, Sandra A., 2003. "Short-run and long-run industry-level estimates of U.S. Armington elasticities," The North American Journal of Economics and Finance, Elsevier, vol. 14(1), pages 49-68, March.
    12. Adam Rose, 2004. "Economic Principles, Issues, and Research Priorities in Hazard Loss Estimation," Advances in Spatial Science, in: Yasuhide Okuyama & Stephanie E. Chang (ed.), Modeling Spatial and Economic Impacts of Disasters, chapter 2, pages 13-36, Springer.
    13. Horridge, Mark & Madden, John & Wittwer, Glyn, 2005. "The impact of the 2002-2003 drought on Australia," Journal of Policy Modeling, Elsevier, vol. 27(3), pages 285-308, April.
    14. Hallegatte, Stephane & Przyluski, Valentin, 2010. "The economics of natural disasters : concepts and methods," Policy Research Working Paper Series 5507, The World Bank.
    15. Boyd, Roy & Ibarrarã N, Maria E., 2009. "Extreme climate events and adaptation: an exploratory analysis of drought in Mexico," Environment and Development Economics, Cambridge University Press, vol. 14(3), pages 371-395, June.
    16. Stéphane Hallegatte, 2008. "An adaptive regional input-output model and its application to the assessment of the economic cost of Katrina," Post-Print hal-00716550, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Botero García, Jesús Alonso & Hurtado, Alvaro & Montañez Herrera, Diego Fernando, 2021. "The productivity of the agricultural sector and its effects on economic growth: a CGE analysis," Conference papers 333318, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    2. Dabo Guan & Daoping Wang & Stephane Hallegatte & Steven J. Davis & Jingwen Huo & Shuping Li & Yangchun Bai & Tianyang Lei & Qianyu Xue & D’Maris Coffman & Danyang Cheng & Peipei Chen & Xi Liang & Bing, 2020. "Global supply-chain effects of COVID-19 control measures," Nature Human Behaviour, Nature, vol. 4(6), pages 577-587, June.
    3. Haoran Zhang & Limin Jiao & Cai Li & Zhongci Deng & Zhen Wang & Qiqi Jia & Xihong Lian & Yaolin Liu & Yuanchao Hu, 2024. "Global environmental impacts of food system from regional shock: Russia-Ukraine war as an example," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trond G. Husby & Elco E. Koks, 2017. "Household migration in disaster impact analysis: incorporating behavioural responses to risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 287-305, May.
    2. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    3. Jahn, Malte, 2013. "Economics of extreme weather events in cities: Terminology and regional impact models," HWWI Research Papers 143, Hamburg Institute of International Economics (HWWI).
    4. Pradeep V. Mandapaka & Edmond Y. M. Lo, 2023. "Assessing Shock Propagation and Cascading Uncertainties Using the Input–Output Framework: Analysis of an Oil Refinery Accident in Singapore," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    5. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.
    6. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    7. Baghersad, Milad & Zobel, Christopher W., 2015. "Economic impact of production bottlenecks caused by disasters impacting interdependent industry sectors," International Journal of Production Economics, Elsevier, vol. 168(C), pages 71-80.
    8. Hallegatte, Stephane, 2012. "Modeling the roles of heterogeneity, substitution, and inventories in the assessment of natural disaster economic costs," Policy Research Working Paper Series 6047, The World Bank.
    9. Jing-Li Fan & Qiao-Mei Liang & Xiao-Jie Liang & Hirokazu Tatano & Yoshio Kajitani & Yi-Ming Wei, 2014. "National vulnerability to extreme climatic events: the cases of electricity disruption in China and Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1937-1956, April.
    10. Naqvi, Asjad, 2017. "Deep Impact: Geo-Simulations as a Policy Toolkit for Natural Disasters," World Development, Elsevier, vol. 99(C), pages 395-418.
    11. Safarzyńska, Karolina & Brouwer, Roy & Hofkes, Marjan, 2013. "Evolutionary modelling of the macro-economic impacts of catastrophic flood events," Ecological Economics, Elsevier, vol. 88(C), pages 108-118.
    12. Selerio, Egberto & Maglasang, Renan, 2021. "Minimizing production loss consequent to disasters using a subsidy optimization model: a pandemic case," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 112-124.
    13. Wenzel, Lars & Wolf, André, 2013. "Protection against major catastrophes: An economic perspective," HWWI Research Papers 137, Hamburg Institute of International Economics (HWWI).
    14. Freire-González, Jaume & Decker, Christopher & Hall, Jim W., 2017. "The Economic Impacts of Droughts: A Framework for Analysis," Ecological Economics, Elsevier, vol. 132(C), pages 196-204.
    15. K. Jenkins, 2013. "Indirect economic losses of drought under future projections of climate change: a case study for Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1967-1986, December.
    16. Asjad Naqvi & Franziska Gaupp & Stefan Hochrainer-Stigler, 2020. "The risk and consequences of multiple breadbasket failures: an integrated copula and multilayer agent-based modeling approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 727-754, September.
    17. Nina Graveline & Marine Gremont, 2017. "Measuring and understanding the microeconomic resilience of businesses to lifeline service interruptions due to natural disasters," Post-Print hal-01631780, HAL.
    18. Kuhla, Kilian & Willner, Sven N & Otto, Christian & Levermann, Anders, 2023. "Resilience of international trade to typhoon-related supply disruptions," Journal of Economic Dynamics and Control, Elsevier, vol. 151(C).
    19. Samiul Hasan & Greg Foliente, 2015. "Modeling infrastructure system interdependencies and socioeconomic impacts of failure in extreme events: emerging R&D challenges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 2143-2168, September.
    20. David Nortes Martínez & Frédéric Grelot & Pauline Bremond & Stefano Farolfi & Juliette Rouchier, 2021. "Are interactions important in estimating flood damage to economic entities? The case of wine-making in France," Post-Print hal-03609616, HAL.

    More about this item

    Keywords

    Computable general equilibrium model; Elasticity of substitution; Natural disaster; Economic loss;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ediscc:v:2:y:2018:i:3:d:10.1007_s41885-018-0027-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.