IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v12y2022i2d10.1007_s13235-021-00401-3.html
   My bibliography  Save this article

The Frequency of Convergent Games under Best-Response Dynamics

Author

Listed:
  • Samuel C. Wiese

    (University of Oxford
    University of Oxford)

  • Torsten Heinrich

    (University of Oxford
    Chemnitz University of Technology
    University of Oxford)

Abstract

We calculate the frequency of games with a unique pure strategy Nash equilibrium in the ensemble of n-player, m-strategy normal-form games. To obtain the ensemble, we generate payoff matrices at random. Games with a unique pure strategy Nash equilibrium converge to the Nash equilibrium. We then consider a wider class of games that converge under a best-response dynamic, in which each player chooses their optimal pure strategy successively. We show that the frequency of convergent games with a given number of pure Nash equilibria goes to zero as the number of players or the number of strategies goes to infinity. In the 2-player case, we show that for large games with at least 10 strategies, convergent games with multiple pure strategy Nash equilibria are more likely than games with a unique Nash equilibrium. Our novel approach uses an n-partite graph to describe games.

Suggested Citation

  • Samuel C. Wiese & Torsten Heinrich, 2022. "The Frequency of Convergent Games under Best-Response Dynamics," Dynamic Games and Applications, Springer, vol. 12(2), pages 689-700, June.
  • Handle: RePEc:spr:dyngam:v:12:y:2022:i:2:d:10.1007_s13235-021-00401-3
    DOI: 10.1007/s13235-021-00401-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13235-021-00401-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13235-021-00401-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moulin, Herve, 1984. "Dominance solvability and cournot stability," Mathematical Social Sciences, Elsevier, vol. 7(1), pages 83-102, February.
    2. Pei, Ting & Takahashi, Satoru, 2019. "Rationalizable strategies in random games," Games and Economic Behavior, Elsevier, vol. 118(C), pages 110-125.
    3. Powers, Imelda Yeung, 1990. "Limiting Distributions of the Number of Pure Strategy Nash Equilibria in N-Person Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(3), pages 277-286.
    4. McLennan, Andrew & Berg, Johannes, 2005. "Asymptotic expected number of Nash equilibria of two-player normal form games," Games and Economic Behavior, Elsevier, vol. 51(2), pages 264-295, May.
    5. Andrew McLennan, 2005. "The Expected Number of Nash Equilibria of a Normal Form Game," Econometrica, Econometric Society, vol. 73(1), pages 141-174, January.
    6. William Stanford, 1996. "The Limit Distribution of Pure Strategy Nash Equilibria in Symmetric Bimatrix Games," Mathematics of Operations Research, INFORMS, vol. 21(3), pages 726-733, August.
    7. Manh Hong Duong & The Anh Han, 2016. "On the Expected Number of Equilibria in a Multi-player Multi-strategy Evolutionary Game," Dynamic Games and Applications, Springer, vol. 6(3), pages 324-346, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Torsten Heinrich & Yoojin Jang & Luca Mungo & Marco Pangallo & Alex Scott & Bassel Tarbush & Samuel Wiese, 2023. "Best-response dynamics, playing sequences, and convergence to equilibrium in random games," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 703-735, September.
    2. Hlafo Alfie Mimun & Matteo Quattropani & Marco Scarsini, 2022. "Best-Response dynamics in two-person random games with correlated payoffs," Papers 2209.12967, arXiv.org, revised Jan 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pangallo, Marco & Heinrich, Torsten & Jang, Yoojin & Scott, Alex & Tarbush, Bassel & Wiese, Samuel & Mungo, Luca, 2021. "Best-Response Dynamics, Playing Sequences, And Convergence To Equilibrium In Random Games," INET Oxford Working Papers 2021-23, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    2. Torsten Heinrich & Yoojin Jang & Luca Mungo & Marco Pangallo & Alex Scott & Bassel Tarbush & Samuel Wiese, 2023. "Best-response dynamics, playing sequences, and convergence to equilibrium in random games," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 703-735, September.
    3. Torsten Heinrich & Yoojin Jang & Luca Mungo & Marco Pangallo & Alex Scott & Bassel Tarbush & Samuel Wiese, 2021. "Best-response dynamics, playing sequences, and convergence to equilibrium in random games," Papers 2101.04222, arXiv.org, revised Nov 2022.
    4. Klaus Kultti & Hannu Salonen & Hannu Vartiainen, 2011. "Distribution of pure Nash equilibria in n-person games with random best replies," Discussion Papers 71, Aboa Centre for Economics.
    5. Takahashi, Satoru, 2008. "The number of pure Nash equilibria in a random game with nondecreasing best responses," Games and Economic Behavior, Elsevier, vol. 63(1), pages 328-340, May.
    6. Pei, Ting & Takahashi, Satoru, 2019. "Rationalizable strategies in random games," Games and Economic Behavior, Elsevier, vol. 118(C), pages 110-125.
    7. Bade, Sophie & Haeringer, Guillaume & Renou, Ludovic, 2007. "More strategies, more Nash equilibria," Journal of Economic Theory, Elsevier, vol. 135(1), pages 551-557, July.
    8. Arieli, Itai & Babichenko, Yakov, 2016. "Random extensive form games," Journal of Economic Theory, Elsevier, vol. 166(C), pages 517-535.
    9. Samuel C. Wiese & Torsten Heinrich, 2020. "The Frequency of Convergent Games under Best-Response Dynamics," Papers 2011.01052, arXiv.org.
    10. Tom Johnston & Michael Savery & Alex Scott & Bassel Tarbush, 2023. "Game Connectivity and Adaptive Dynamics," Papers 2309.10609, arXiv.org, revised Nov 2023.
    11. Heinrich, Torsten & Wiese, Samuel, 2020. "The Frequency of Convergent Games under Best-Response Dynamics," INET Oxford Working Papers 2020-24, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    12. Noga Alon & Kirill Rudov & Leeat Yariv, 2021. "Dominance Solvability in Random Games," Working Papers 2021-84, Princeton University. Economics Department..
    13. Ben Amiet & Andrea Collevecchio & Marco Scarsini & Ziwen Zhong, 2021. "Pure Nash Equilibria and Best-Response Dynamics in Random Games," Mathematics of Operations Research, INFORMS, vol. 46(4), pages 1552-1572, November.
    14. Elizabeth Baldwin & Paul Klemperer, 2019. "Understanding Preferences: “Demand Types”, and the Existence of Equilibrium With Indivisibilities," Econometrica, Econometric Society, vol. 87(3), pages 867-932, May.
    15. Stanford, William, 1999. "On the number of pure strategy Nash equilibria in finite common payoffs games," Economics Letters, Elsevier, vol. 62(1), pages 29-34, January.
    16. David Roberts, 2006. "Nash equilibria of Cauchy-random zero-sum and coordination matrix games," International Journal of Game Theory, Springer;Game Theory Society, vol. 34(2), pages 167-184, August.
    17. McLennan, Andrew & Berg, Johannes, 2005. "Asymptotic expected number of Nash equilibria of two-player normal form games," Games and Economic Behavior, Elsevier, vol. 51(2), pages 264-295, May.
    18. Brandl, Florian, 2017. "The distribution of optimal strategies in symmetric zero-sum games," Games and Economic Behavior, Elsevier, vol. 104(C), pages 674-680.
    19. Manh Hong Duong & The Anh Han, 2016. "On the Expected Number of Equilibria in a Multi-player Multi-strategy Evolutionary Game," Dynamic Games and Applications, Springer, vol. 6(3), pages 324-346, September.
    20. Patrick Bajari & Han Hong & Stephen P. Ryan, 2010. "Identification and Estimation of a Discrete Game of Complete Information," Econometrica, Econometric Society, vol. 78(5), pages 1529-1568, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:12:y:2022:i:2:d:10.1007_s13235-021-00401-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.