Advanced Search
MyIDEAS: Login to save this article or follow this journal

Limiting Distributions of the Number of Pure Strategy Nash Equilibria in N-Person Games

Contents:

Author Info

  • Powers, Imelda Yeung
Registered author(s):

    Abstract

    No abstract is available for this item.

    Download Info

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below under "Related research" whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Bibliographic Info

    Article provided by Springer in its journal International Journal of Game Theory.

    Volume (Year): 19 (1990)
    Issue (Month): 3 ()
    Pages: 277-86

    as in new window
    Handle: RePEc:spr:jogath:v:19:y:1990:i:3:p:277-86

    Contact details of provider:
    Web page: http://link.springer.de/link/service/journals/00182/index.htm

    Order Information:
    Web: http://link.springer.de/orders.htm

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Thomas Quint & Martin Shubik, 1994. "On the Number of Nash Equilibria in a Bimatrix Game," Cowles Foundation Discussion Papers 1089, Cowles Foundation for Research in Economics, Yale University.
    2. Stanford, William, 2004. "Individually rational pure strategies in large games," Games and Economic Behavior, Elsevier, vol. 47(1), pages 221-233, April.
    3. Klaus Kultti & Hannu Salonen & Hannu Vartiainen, 2011. "Distribution of pure Nash equilibria in n-person games with random best replies," Discussion Papers 71, Aboa Centre for Economics.
    4. Stanford, William, 1999. "On the number of pure strategy Nash equilibria in finite common payoffs games," Economics Letters, Elsevier, vol. 62(1), pages 29-34, January.
    5. Stanford, William, 1997. "On the distribution of pure strategy equilibria in finite games with vector payoffs," Mathematical Social Sciences, Elsevier, vol. 33(2), pages 115-127, April.
    6. McLennan, Andrew & Berg, Johannes, 2005. "Asymptotic expected number of Nash equilibria of two-player normal form games," Games and Economic Behavior, Elsevier, vol. 51(2), pages 264-295, May.
    7. Stanford, William, 2010. "The number of pure strategy Nash equilibria in random multi-team games," Economics Letters, Elsevier, vol. 108(3), pages 352-354, September.
    8. Rinott, Yosef & Scarsini, Marco, 2000. "On the Number of Pure Strategy Nash Equilibria in Random Games," Games and Economic Behavior, Elsevier, vol. 33(2), pages 274-293, November.
    9. Takahashi, Satoru, 2008. "The number of pure Nash equilibria in a random game with nondecreasing best responses," Games and Economic Behavior, Elsevier, vol. 63(1), pages 328-340, May.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:19:y:1990:i:3:p:277-86. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.