IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v18y2021i4d10.1007_s10287-021-00403-x.html
   My bibliography  Save this article

Coordination of power and natural gas markets via financial instruments

Author

Listed:
  • Anna Schwele

    (Technical University of Denmark)

  • Christos Ordoudis

    (Technical University of Denmark)

  • Pierre Pinson

    (Technical University of Denmark)

  • Jalal Kazempour

    (Technical University of Denmark)

Abstract

Current electricity and natural gas markets operate with deterministic description of uncertain supply, and in a temporally and sectorally decoupled way. This practice in energy systems is being challenged by the increasing integration of stochastic renewable energy sources. There is a growing need for exchanging operational flexibility among energy sectors, which requires to improve the sectoral coordination between electricity and natural gas markets. In addition, the dispatch of flexible units in both sectors needs to be made in a more uncertainty-aware manner, requiring to strengthen the temporal coordination between day-ahead and real-time energy markets. We explore the use of existing financial instruments in the form of virtual bidding (VB) as a market-based solution to enhance both sectoral and temporal coordination in energy markets. It is established in the literature that VB by purely financial players is able to enhance the temporal coordination between deterministic day-ahead and real-time markets. By developing various stochastic equilibrium and optimization models, we show that VB by physical players, i.e., gas-fired power plants, at the interface of power and natural gas systems is of great potential to improve not only the temporal coordination between deterministic day-ahead and real-time markets, but also the sectoral coordination between deterministic electricity and natural gas markets. We exploit a fully stochastic co-optimization model as an ideal benchmark, and numerically illustrate the benefits of VB for increasing the overall market efficiency in terms of reduced expected operational cost of the entire energy system. We eventually show that flexible resources in both electricity and natural gas markets are dispatched more efficiently in the day-ahead stage when VB exists.

Suggested Citation

  • Anna Schwele & Christos Ordoudis & Pierre Pinson & Jalal Kazempour, 2021. "Coordination of power and natural gas markets via financial instruments," Computational Management Science, Springer, vol. 18(4), pages 505-538, October.
  • Handle: RePEc:spr:comgts:v:18:y:2021:i:4:d:10.1007_s10287-021-00403-x
    DOI: 10.1007/s10287-021-00403-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-021-00403-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-021-00403-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zakeri, Golbon & Pritchard, Geoff & Bjørndal, Mette & Bjørndal, Endre, 2016. "Pricing wind: A revenue adequate, cost recovering uniform price for electricity markets with intermittent generation," Discussion Papers 2016/15, Norwegian School of Economics, Department of Business and Management Science.
    2. Jacob Mays & David P. Morton & Richard P. O’Neill, 2019. "Asymmetric risk and fuel neutrality in electricity capacity markets," Nature Energy, Nature, vol. 4(11), pages 948-956, November.
    3. Birge, John R. & Hortaçsu, Ali & Mercadal, Ignacia & Pavlin, J. Michael, 2018. "Limits to arbitrage in electricity markets: A case study of MISO," Energy Economics, Elsevier, vol. 75(C), pages 518-533.
    4. Nigel Cleland & Golbon Zakeri & Geoff Pritchard & Brent Young, 2015. "Boomer-Consumer: a model for load consumption and reserve offers in reserve constrained electricity markets," Computational Management Science, Springer, vol. 12(4), pages 519-537, October.
    5. Ordoudis, Christos & Delikaraoglou, Stefanos & Kazempour, Jalal & Pinson, Pierre, 2020. "Market-based coordination of integrated electricity and natural gas systems under uncertain supply," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1105-1119.
    6. Craig, Michael & Guerra, Omar J. & Brancucci, Carlo & Pambour, Kwabena Addo & Hodge, Bri-Mathias, 2020. "Valuing intra-day coordination of electric power and natural gas system operations," Energy Policy, Elsevier, vol. 141(C).
    7. Bobo, Lucien & Mitridati, Lesia & Taylor, Josh A. & Pinson, Pierre & Kazempour, Jalal, 2021. "Price-region bids in electricity markets," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1056-1073.
    8. Liu, Yanchao & Holzer, Jesse T. & Ferris, Michael C., 2015. "Extending the bidding format to promote demand response," Energy Policy, Elsevier, vol. 86(C), pages 82-92.
    9. Sioshansi, Ramteen & Oren, Shmuel & O'Neill, Richard, 2010. "Three-part auctions versus self-commitment in day-ahead electricity markets," Utilities Policy, Elsevier, vol. 18(4), pages 165-173, December.
    10. Lars Schewe & Martin Schmidt & Johannes Thürauf, 2020. "Computing technical capacities in the European entry-exit gas market is NP-hard," Annals of Operations Research, Springer, vol. 295(1), pages 337-362, December.
    11. Morales, Juan M. & Zugno, Marco & Pineda, Salvador & Pinson, Pierre, 2014. "Electricity market clearing with improved scheduling of stochastic production," European Journal of Operational Research, Elsevier, vol. 235(3), pages 765-774.
    12. Conrado Borraz-Sánchez & Russell Bent & Scott Backhaus & Hassan Hijazi & Pascal Van Hentenryck, 2016. "Convex Relaxations for Gas Expansion Planning," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 645-656, November.
    13. Koichiro Ito & Mar Reguant, 2016. "Sequential Markets, Market Power, and Arbitrage," American Economic Review, American Economic Association, vol. 106(7), pages 1921-1957, July.
    14. Jacek Krawczyk, 2007. "Numerical solutions to coupled-constraint (or generalised Nash) equilibrium problems," Computational Management Science, Springer, vol. 4(2), pages 183-204, April.
    15. Ruoyang Li & Alva Svoboda & Shmuel Oren, 2015. "Efficiency impact of convergence bidding in the california electricity market," Journal of Regulatory Economics, Springer, vol. 48(3), pages 245-284, December.
    16. Masao Fukushima, 2011. "Restricted generalized Nash equilibria and controlled penalty algorithm," Computational Management Science, Springer, vol. 8(3), pages 201-218, August.
    17. Ordoudis, Christos & Pinson, Pierre & Morales, Juan M., 2019. "An Integrated Market for Electricity and Natural Gas Systems with Stochastic Power Producers," European Journal of Operational Research, Elsevier, vol. 272(2), pages 642-654.
    18. Iacopo Savelli & Bertrand Corn'elusse & Antonio Giannitrapani & Simone Paoletti & Antonio Vicino, 2017. "A New Approach to Electricity Market Clearing With Uniform Purchase Price and Curtailable Block Orders," Papers 1711.07731, arXiv.org, revised Jun 2018.
    19. Morales, Juan M. & Pineda, Salvador, 2017. "On the inefficiency of the merit order in forward electricity markets with uncertain supply," European Journal of Operational Research, Elsevier, vol. 261(2), pages 789-799.
    20. Victor M. Zavala & Kibaek Kim & Mihai Anitescu & John Birge, 2017. "A Stochastic Electricity Market Clearing Formulation with Consistent Pricing Properties," Operations Research, INFORMS, vol. 65(3), pages 557-576, June.
    21. Harker, Patrick T., 1991. "Generalized Nash games and quasi-variational inequalities," European Journal of Operational Research, Elsevier, vol. 54(1), pages 81-94, September.
    22. Hanspeter Höschle & Hélène le Cadre, & Yves Smeers & Anthony Papavasiliou & Ronnie Belmans, 2018. "An ADMM-based method for computing risk-averse equilibrium in capacity markets," LIDAM Reprints CORE 3020, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    23. Isemonger, Alan G., 2006. "The Benefits and Risks of Virtual Bidding in Multi-Settlement Markets," The Electricity Journal, Elsevier, vol. 19(9), pages 26-36, November.
    24. Jong-Shi Pang & Masao Fukushima, 2005. "Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games," Computational Management Science, Springer, vol. 2(1), pages 21-56, January.
    25. Hallack, Michelle & Vazquez, Miguel, 2013. "European Union regulation of gas transmission services: Challenges in the allocation of network resources through entry/exit schemes," Utilities Policy, Elsevier, vol. 25(C), pages 23-32.
    26. Jónsson, Tryggvi & Pinson, Pierre & Madsen, Henrik, 2010. "On the market impact of wind energy forecasts," Energy Economics, Elsevier, vol. 32(2), pages 313-320, March.
    27. RuthDominguez & Giorgia Oggioni & Yves Smeers, 2019. "Reserve procurement and flexibility services in power systems with high renewable capacity: Effects of integration on different market designs," LIDAM Reprints CORE 3019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    28. Fleten, Stein-Erik & Näsäkkälä, Erkka, 2010. "Gas-fired power plants: Investment timing, operating flexibility and CO2 capture," Energy Economics, Elsevier, vol. 32(4), pages 805-816, July.
    29. Daraeepour, Ali & Patino-Echeverri, Dalia & Conejo, Antonio J., 2019. "Economic and environmental implications of different approaches to hedge against wind production uncertainty in two-settlement electricity markets: A PJM case study," Energy Economics, Elsevier, vol. 80(C), pages 336-354.
    30. Xiaojia Guo & Alexandros Beskos & Afzal Siddiqui, 2016. "The natural hedge of a gas-fired power plant," Computational Management Science, Springer, vol. 13(1), pages 63-86, January.
    31. Savelli, Iacopo & Cornélusse, Bertrand & Giannitrapani, Antonio & Paoletti, Simone & Vicino, Antonio, 2018. "A new approach to electricity market clearing with uniform purchase price and curtailable block orders," Applied Energy, Elsevier, vol. 226(C), pages 618-630.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hermann, Alexander & Jensen, Tue Vissing & Østergaard, Jacob & Kazempour, Jalal, 2022. "A complementarity model for electric power transmission-distribution coordination under uncertainty," European Journal of Operational Research, Elsevier, vol. 299(1), pages 313-329.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva-Rodriguez, Lina & Sanjab, Anibal & Fumagalli, Elena & Virag, Ana & Gibescu, Madeleine, 2022. "Short term wholesale electricity market designs: A review of identified challenges and promising solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Lina Silva-Rodriguez & Anibal Sanjab & Elena Fumagalli & Ana Virag & Madeleine Gibescu, 2020. "Short Term Electricity Market Designs: Identified Challenges and Promising Solutions," Papers 2011.04587, arXiv.org.
    3. J. Contreras & J. B. Krawczyk & J. Zuccollo, 2016. "Economics of collective monitoring: a study of environmentally constrained electricity generators," Computational Management Science, Springer, vol. 13(3), pages 349-369, July.
    4. Han, Deren & Zhang, Hongchao & Qian, Gang & Xu, Lingling, 2012. "An improved two-step method for solving generalized Nash equilibrium problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 613-623.
    5. Ordoudis, Christos & Delikaraoglou, Stefanos & Kazempour, Jalal & Pinson, Pierre, 2020. "Market-based coordination of integrated electricity and natural gas systems under uncertain supply," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1105-1119.
    6. Shariat Torbaghan, Shahab & Madani, Mehdi & Sels, Peter & Virag, Ana & Le Cadre, Hélène & Kessels, Kris & Mou, Yuting, 2021. "Designing day-ahead multi-carrier markets for flexibility: Models and clearing algorithms," Applied Energy, Elsevier, vol. 285(C).
    7. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    8. Bjørndal, Endre & Bjørndal, Mette & Midthun, Kjetil & Tomasgard, Asgeir, 2018. "Stochastic electricity dispatch: A challenge for market design," Energy, Elsevier, vol. 150(C), pages 992-1005.
    9. Zhang, Weiqi & Zavala, Victor M., 2022. "Remunerating space–time, load-shifting flexibility from data centers in electricity markets," Applied Energy, Elsevier, vol. 326(C).
    10. Jiawang Nie & Xindong Tang & Lingling Xu, 2021. "The Gauss–Seidel method for generalized Nash equilibrium problems of polynomials," Computational Optimization and Applications, Springer, vol. 78(2), pages 529-557, March.
    11. Elnaz Kanani Kuchesfehani & Georges Zaccour, 2015. "S-adapted Equilibria in Games Played Over Event Trees with Coupled Constraints," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 644-658, August.
    12. Muñoz, Francisco D. & Suazo-Martínez, Carlos & Pereira, Eduardo & Moreno, Rodrigo, 2021. "Electricity market design for low-carbon and flexible systems: Room for improvement in Chile," Energy Policy, Elsevier, vol. 148(PB).
    13. Bobo, Lucien & Mitridati, Lesia & Taylor, Josh A. & Pinson, Pierre & Kazempour, Jalal, 2021. "Price-region bids in electricity markets," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1056-1073.
    14. Christian Kanzow & Daniel Steck, 2018. "Augmented Lagrangian and exact penalty methods for quasi-variational inequalities," Computational Optimization and Applications, Springer, vol. 69(3), pages 801-824, April.
    15. Arrigo, Adriano & Ordoudis, Christos & Kazempour, Jalal & De Grève, Zacharie & Toubeau, Jean-François & Vallée, François, 2022. "Wasserstein distributionally robust chance-constrained optimization for energy and reserve dispatch: An exact and physically-bounded formulation," European Journal of Operational Research, Elsevier, vol. 296(1), pages 304-322.
    16. Veronika Grimm & Lars Schewe & Martin Schmidt & Gregor Zöttl, 2019. "A multilevel model of the European entry-exit gas market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(2), pages 223-255, April.
    17. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    18. Hopkins, Caroline A., 2020. "Convergence bids and market manipulation in the California electricity market," Energy Economics, Elsevier, vol. 89(C).
    19. Jacek B. Krawczyk & Mabel Tidball, 2016. "Economic Problems with Constraints: How Efficiency Relates to Equilibrium," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-19, December.
    20. Masao Fukushima, 2011. "Restricted generalized Nash equilibria and controlled penalty algorithm," Computational Management Science, Springer, vol. 8(3), pages 201-218, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:18:y:2021:i:4:d:10.1007_s10287-021-00403-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.