IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v296y2022i1p304-322.html
   My bibliography  Save this article

Wasserstein distributionally robust chance-constrained optimization for energy and reserve dispatch: An exact and physically-bounded formulation

Author

Listed:
  • Arrigo, Adriano
  • Ordoudis, Christos
  • Kazempour, Jalal
  • De Grève, Zacharie
  • Toubeau, Jean-François
  • Vallée, François

Abstract

In the context of transition towards sustainable, cost-efficient and reliable energy systems, the improvement of current energy and reserve dispatch models is crucial to properly cope with the uncertainty of weather-dependent renewable power generation. In contrast to traditional approaches, distributionally robust optimization offers a risk-aware framework that provides performance guarantees when the distribution of uncertain parameters is not perfectly known. In this paper, we develop a distributionally robust chance-constrained optimization with a Wasserstein ambiguity set for energy and reserve dispatch, and provide an exact reformulation. While preserving the exactness, we then improve the model by enforcing physical bounds on the uncertainty space, resulting in a bilinear program. We solve the resulting bilinear model with an iterative algorithm which is computationally efficient and has convergence guarantee. A thorough out-of-sample analysis is performed to compare the proposed model against a scenario-based stochastic program. We also compare the performance of the proposed exact reformulation against an existing approximate technique in the literature, built upon a conditional-value-at-risk measure. We eventually show that the proposed physically-bounded exact reformulation outperforms the other methods by achieving a cost-optimal yet reliable trade-off between reserve procurement and load curtailment.

Suggested Citation

  • Arrigo, Adriano & Ordoudis, Christos & Kazempour, Jalal & De Grève, Zacharie & Toubeau, Jean-François & Vallée, François, 2022. "Wasserstein distributionally robust chance-constrained optimization for energy and reserve dispatch: An exact and physically-bounded formulation," European Journal of Operational Research, Elsevier, vol. 296(1), pages 304-322.
  • Handle: RePEc:eee:ejores:v:296:y:2022:i:1:p:304-322
    DOI: 10.1016/j.ejor.2021.04.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721003271
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.04.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shehadeh, Karmel S. & Padman, Rema, 2021. "A distributionally robust optimization approach for stochastic elective surgery scheduling with limited intensive care unit capacity," European Journal of Operational Research, Elsevier, vol. 290(3), pages 901-913.
    2. Jónsson, Tryggvi & Pinson, Pierre & Madsen, Henrik, 2010. "On the market impact of wind energy forecasts," Energy Economics, Elsevier, vol. 32(2), pages 313-320, March.
    3. RuthDominguez & Giorgia Oggioni & Yves Smeers, 2019. "Reserve procurement and flexibility services in power systems with high renewable capacity: Effects of integration on different market designs," LIDAM Reprints CORE 3019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    5. Morales, Juan M. & Zugno, Marco & Pineda, Salvador & Pinson, Pierre, 2014. "Electricity market clearing with improved scheduling of stochastic production," European Journal of Operational Research, Elsevier, vol. 235(3), pages 765-774.
    6. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    7. Basciftci, Beste & Ahmed, Shabbir & Shen, Siqian, 2021. "Distributionally robust facility location problem under decision-dependent stochastic demand," European Journal of Operational Research, Elsevier, vol. 292(2), pages 548-561.
    8. Shapiro, Alexander, 2021. "Tutorial on risk neutral, distributionally robust and risk averse multistage stochastic programming," European Journal of Operational Research, Elsevier, vol. 288(1), pages 1-13.
    9. Xin, Linwei & Goldberg, David A., 2021. "Time (in)consistency of multistage distributionally robust inventory models with moment constraints," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1127-1141.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Ruru & Gao, Jinwu & Gao, Feng, 2022. "Robust ocean zoning for conservation, fishery and marine renewable energy with co-location strategy," Applied Energy, Elsevier, vol. 328(C).
    2. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.
    3. Yin, Yunqiang & Luo, Zunhao & Wang, Dujuan & Cheng, T.C.E., 2023. "Wasserstein distance‐based distributionally robust parallel‐machine scheduling," Omega, Elsevier, vol. 120(C).
    4. Zhang, Mengling & Jiao, Zihao & Ran, Lun & Zhang, Yuli, 2023. "Optimal energy and reserve scheduling in a renewable-dominant power system," Omega, Elsevier, vol. 118(C).
    5. Bellè, Andrea & Abdin, Adam F. & Fang, Yi-Ping & Zeng, Zhiguo & Barros, Anne, 2023. "A data-driven distributionally robust approach for the optimal coupling of interdependent critical infrastructures under random failures," European Journal of Operational Research, Elsevier, vol. 309(2), pages 872-889.
    6. Bowen Li & Ruiwei Jiang & Johanna L. Mathieu, 2022. "Integrating unimodality into distributionally robust optimal power flow," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 594-617, October.
    7. Zhou, Kaile & Fei, Zhineng & Hu, Rong, 2023. "Hybrid robust decentralized optimization of emission-aware multi-energy microgrids considering multiple uncertainties," Energy, Elsevier, vol. 265(C).
    8. Yu, Haiyan & Yang, Ching-Chi & Yu, Ping, 2023. "Constrained optimization for stratified treatment rules in reducing hospital readmission rates of diabetic patients," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1355-1364.
    9. Zhai, Junyi & Wang, Sheng & Guo, Lei & Jiang, Yuning & Kang, Zhongjian & Jones, Colin N., 2022. "Data-driven distributionally robust joint chance-constrained energy management for multi-energy microgrid," Applied Energy, Elsevier, vol. 326(C).
    10. Esteban-Pérez, Adrián & Morales, Juan M., 2023. "Distributionally robust optimal power flow with contextual information," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1047-1058.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Schwele & Christos Ordoudis & Pierre Pinson & Jalal Kazempour, 2021. "Coordination of power and natural gas markets via financial instruments," Computational Management Science, Springer, vol. 18(4), pages 505-538, October.
    2. Tianqi Liu & Francisco Saldanha-da-Gama & Shuming Wang & Yuchen Mao, 2022. "Robust Stochastic Facility Location: Sensitivity Analysis and Exact Solution," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2776-2803, September.
    3. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    4. Zhang, Hanxiao & Li, Yan-Fu, 2022. "Robust optimization on redundancy allocation problems in multi-state and continuous-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    5. Viet Anh Nguyen & Daniel Kuhn & Peyman Mohajerin Esfahani, 2018. "Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator," Papers 1805.07194, arXiv.org.
    6. Taozeng Zhu & Jingui Xie & Melvyn Sim, 2022. "Joint Estimation and Robustness Optimization," Management Science, INFORMS, vol. 68(3), pages 1659-1677, March.
    7. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    8. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    9. Pengyu Qian & Zizhuo Wang & Zaiwen Wen, 2015. "A Composite Risk Measure Framework for Decision Making under Uncertainty," Papers 1501.01126, arXiv.org.
    10. Zhao, Kena & Ng, Tsan Sheng & Tan, Chin Hon & Pang, Chee Khiang, 2021. "An almost robust model for minimizing disruption exposures in supply systems," European Journal of Operational Research, Elsevier, vol. 295(2), pages 547-559.
    11. Longsheng Sun & Mark H. Karwan & Changhyun Kwon, 2018. "Generalized Bounded Rationality and Robust Multicommodity Network Design," Operations Research, INFORMS, vol. 66(1), pages 42-57, 1-2.
    12. Xiaojiao Tong & Hailin Sun & Xiao Luo & Quanguo Zheng, 2018. "Distributionally robust chance constrained optimization for economic dispatch in renewable energy integrated systems," Journal of Global Optimization, Springer, vol. 70(1), pages 131-158, January.
    13. Antonio J. Conejo & Nicholas G. Hall & Daniel Zhuoyu Long & Runhao Zhang, 2021. "Robust Capacity Planning for Project Management," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1533-1550, October.
    14. Vishal Gupta, 2019. "Near-Optimal Bayesian Ambiguity Sets for Distributionally Robust Optimization," Management Science, INFORMS, vol. 65(9), pages 4242-4260, September.
    15. Ran Ji & Miguel A. Lejeune, 2021. "Data-Driven Optimization of Reward-Risk Ratio Measures," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1120-1137, July.
    16. Shubhechyya Ghosal & Wolfram Wiesemann, 2020. "The Distributionally Robust Chance-Constrained Vehicle Routing Problem," Operations Research, INFORMS, vol. 68(3), pages 716-732, May.
    17. Steffen Rebennack, 2022. "Data-driven stochastic optimization for distributional ambiguity with integrated confidence region," Journal of Global Optimization, Springer, vol. 84(2), pages 255-293, October.
    18. Yang, Yongjian & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Dhamotharan, Lalitha, 2023. "Distributionally robust multi-period location-allocation with multiple resources and capacity levels in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1042-1062.
    19. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    20. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:296:y:2022:i:1:p:304-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.