IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1711.07731.html
   My bibliography  Save this paper

A New Approach to Electricity Market Clearing With Uniform Purchase Price and Curtailable Block Orders

Author

Listed:
  • Iacopo Savelli
  • Bertrand Corn'elusse
  • Antonio Giannitrapani
  • Simone Paoletti
  • Antonio Vicino

Abstract

The European market clearing problem is characterized by a set of heterogeneous orders and rules that force the implementation of heuristic and iterative solving methods. In particular, curtailable block orders and the uniform purchase price (UPP) pose serious difficulties. A block is an order that spans over multiple hours, and can be either fully accepted or fully rejected. The UPP prescribes that all consumers pay a common price, i.e., the UPP, in all the zones, while producers receive zonal prices, which can differ from one zone to another. The market clearing problem in the presence of both the UPP and block orders is a major open issue in the European context. The UPP scheme leads to a non-linear optimization problem involving both primal and dual variables, whereas block orders introduce multi-temporal constraints and binary variables into the problem. As a consequence, the market clearing problem in the presence of both blocks and the UPP can be regarded as a non-linear integer programming problem involving both primal and dual variables with complementary and multi-temporal constraints. The aim of this paper is to present a non-iterative and heuristic-free approach for solving the market clearing problem in the presence of both curtailable block orders and the UPP. The solution is exact, with no approximation up to the level of resolution of current market data. By resorting to an equivalent UPP formulation, the proposed approach results in a mixed-integer linear program, which is built starting from a non-linear integer bilevel programming problem. Numerical results using real market data are reported to show the effectiveness of the proposed approach. The model has been implemented in Python, and the code is freely available on a public repository.

Suggested Citation

  • Iacopo Savelli & Bertrand Corn'elusse & Antonio Giannitrapani & Simone Paoletti & Antonio Vicino, 2017. "A New Approach to Electricity Market Clearing With Uniform Purchase Price and Curtailable Block Orders," Papers 1711.07731, arXiv.org, revised Jun 2018.
  • Handle: RePEc:arx:papers:1711.07731
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1711.07731
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Madani, Mehdi & Van Vyve, Mathieu, 2015. "Computationally efficient MIP formulation and algorithms for European day-ahead electricity market auctions," European Journal of Operational Research, Elsevier, vol. 242(2), pages 580-593.
    2. Farahmand, H. & Doorman, G.L., 2012. "Balancing market integration in the Northern European continent," Applied Energy, Elsevier, vol. 96(C), pages 316-326.
    3. Antonio J. Conejo & Miguel Carrión & Juan M. Morales, 2010. "Decision Making Under Uncertainty in Electricity Markets," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7421-1, September.
    4. Newbery, David & Strbac, Goran & Viehoff, Ivan, 2016. "The benefits of integrating European electricity markets," Energy Policy, Elsevier, vol. 94(C), pages 253-263.
    5. Meeus, Leonardo & Verhaegen, Karolien & Belmans, Ronnie, 2009. "Block order restrictions in combinatorial electric energy auctions," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1202-1206, August.
    6. Brijs, Tom & De Jonghe, Cedric & Hobbs, Benjamin F. & Belmans, Ronnie, 2017. "Interactions between the design of short-term electricity markets in the CWE region and power system flexibility," Applied Energy, Elsevier, vol. 195(C), pages 36-51.
    7. Fernández-Blanco, Ricardo & Arroyo, José M. & Alguacil, Natalia, 2014. "Consumer payment minimization under uniform pricing: A mixed-integer linear programming approach," Applied Energy, Elsevier, vol. 114(C), pages 676-686.
    8. Mehdi MADANI & Mathieu VAN VYVE, 2015. "Computationally efficient MIP formulation and algorithms for European day-ahead electricity market auctions," LIDAM Reprints CORE 2808, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Le Hong Lam & Valentin Ilea & Cristian Bovo, 2020. "New Clearing Model to Mitigate the Non-Convexity in European Day-ahead Electricity Market," Energies, MDPI, vol. 13(18), pages 1-28, September.
    2. Wang, Delu & Liu, Yifei & Wang, Yadong & Shi, Xunpeng & Song, Xuefeng, 2020. "Allocation of coal de-capacity quota among provinces in China: A bi-level multi-objective combinatorial optimization approach," Energy Economics, Elsevier, vol. 87(C).
    3. Le, Hong Lam & Ilea, Valentin & Bovo, Cristian, 2019. "Integrated European intra-day electricity market: Rules, modeling and analysis," Applied Energy, Elsevier, vol. 238(C), pages 258-273.
    4. Shariat Torbaghan, Shahab & Madani, Mehdi & Sels, Peter & Virag, Ana & Le Cadre, Hélène & Kessels, Kris & Mou, Yuting, 2021. "Designing day-ahead multi-carrier markets for flexibility: Models and clearing algorithms," Applied Energy, Elsevier, vol. 285(C).
    5. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "Incorporating unit commitment aspects to the European electricity markets algorithm: An optimization model for the joint clearing of energy and reserve markets," Applied Energy, Elsevier, vol. 231(C), pages 235-258.
    6. Savelli, Iacopo & Morstyn, Thomas, 2021. "Electricity prices and tariffs to keep everyone happy: A framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Omega, Elsevier, vol. 103(C).
    7. Xiong, Linyun & Li, Penghan & Wang, Ziqiang & Wang, Jie, 2020. "Multi-agent based multi objective renewable energy management for diversified community power consumers," Applied Energy, Elsevier, vol. 259(C).
    8. Ishizaki, Takayuki & Koike, Masakazu & Yamaguchi, Nobuyuki & Ueda, Yuzuru & Imura, Jun-ichi, 2020. "Day-ahead energy market as adjustable robust optimization: Spatio-temporal pricing of dispatchable generators, storage batteries, and uncertain renewable resources," Energy Economics, Elsevier, vol. 91(C).
    9. Savelli, Iacopo & De Paola, Antonio & Li, Furong, 2020. "Ex-ante dynamic network tariffs for transmission cost recovery," Applied Energy, Elsevier, vol. 258(C).
    10. Cornélusse, Bertrand & Savelli, Iacopo & Paoletti, Simone & Giannitrapani, Antonio & Vicino, Antonio, 2019. "A community microgrid architecture with an internal local market," Applied Energy, Elsevier, vol. 242(C), pages 547-560.
    11. Iacopo Savelli & Thomas Morstyn, 2020. "Electricity prices and tariffs to keep everyone happy: a framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Papers 2001.04283, arXiv.org, revised Jun 2021.
    12. Anna Schwele & Christos Ordoudis & Pierre Pinson & Jalal Kazempour, 2021. "Coordination of power and natural gas markets via financial instruments," Computational Management Science, Springer, vol. 18(4), pages 505-538, October.
    13. Bertrand Corn'elusse & Iacopo Savelli & Simone Paoletti & Antonio Giannitrapani & Antonio Vicino, 2018. "A Community Microgrid Architecture with an Internal Local Market," Papers 1810.09803, arXiv.org, revised Feb 2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Savelli, Iacopo & Cornélusse, Bertrand & Giannitrapani, Antonio & Paoletti, Simone & Vicino, Antonio, 2018. "A new approach to electricity market clearing with uniform purchase price and curtailable block orders," Applied Energy, Elsevier, vol. 226(C), pages 618-630.
    2. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "Incorporating unit commitment aspects to the European electricity markets algorithm: An optimization model for the joint clearing of energy and reserve markets," Applied Energy, Elsevier, vol. 231(C), pages 235-258.
    3. Mehdi Madani & Mathieu Van Vyve, 2017. "A MIP framework for non-convex uniform price day-ahead electricity auctions," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 263-284, March.
    4. Kursad Derinkuyu & Fehmi Tanrisever & Nermin Kurt & Gokhan Ceyhan, 2020. "Optimizing Day-Ahead Electricity Market Prices: Increasing the Total Surplus for Energy Exchange Istanbul," Manufacturing & Service Operations Management, INFORMS, vol. 22(4), pages 700-716, July.
    5. Madani, M. & Van Vyve, M., 2015. "A MIP framework for non-convex uniform price day-ahead electricity auctions," LIDAM Discussion Papers CORE 2015017, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. D'avid Csercsik, 2020. "Strategic bidding via the interplay of minimum income condition orders in day-ahead power exchanges," Papers 2012.07789, arXiv.org.
    7. Dávid Csercsik & Ádám Sleisz & Péter Márk Sőrés, 2019. "The Uncertain Bidder Pays Principle and Its Implementation in a Simple Integrated Portfolio-Bidding Energy-Reserve Market Model," Energies, MDPI, vol. 12(15), pages 1-25, August.
    8. Brijs, Tom & De Jonghe, Cedric & Hobbs, Benjamin F. & Belmans, Ronnie, 2017. "Interactions between the design of short-term electricity markets in the CWE region and power system flexibility," Applied Energy, Elsevier, vol. 195(C), pages 36-51.
    9. Abhishek Ray & Mario Ventresca & Karthik Kannan, 2021. "A Graph-Based Ant Algorithm for the Winner Determination Problem in Combinatorial Auctions," Information Systems Research, INFORMS, vol. 32(4), pages 1099-1114, December.
    10. Csercsik, Dávid, 2021. "Strategic bidding via the interplay of minimum income condition orders in day-ahead power exchanges," Energy Economics, Elsevier, vol. 95(C).
    11. Le Hong Lam & Valentin Ilea & Cristian Bovo, 2020. "New Clearing Model to Mitigate the Non-Convexity in European Day-ahead Electricity Market," Energies, MDPI, vol. 13(18), pages 1-28, September.
    12. Tanrisever, Fehmi & Derinkuyu, Kursad & Jongen, Geert, 2015. "Organization and functioning of liberalized electricity markets: An overview of the Dutch market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1363-1374.
    13. Nermin Elif Kurt & H. Bahadir Sahin & Kurc{s}ad Derinkuyu, 2018. "An Adaptive Tabu Search Algorithm for Market Clearing Problem in Turkish Day-Ahead Market," Papers 1809.10554, arXiv.org.
    14. Nikolaos Koltsaklis & Athanasios Dagoumas, 2018. "Policy Implications of Power Exchanges on Operational Scheduling: Evaluating EUPHEMIA’s Market Products in Case of Greece," Energies, MDPI, vol. 11(10), pages 1-26, October.
    15. Ceyhan, Gökhan & Köksalan, Murat & Lokman, Banu, 2022. "Extensions for Benders cuts and new valid inequalities for solving the European day-ahead electricity market clearing problem efficiently," European Journal of Operational Research, Elsevier, vol. 300(2), pages 713-726.
    16. Fridgen, Gilbert & Keller, Robert & Thimmel, Markus & Wederhake, Lars, 2017. "Shifting load through space–The economics of spatial demand side management using distributed data centers," Energy Policy, Elsevier, vol. 109(C), pages 400-413.
    17. Gokhan Ceyhan & Nermin Elif Kurt & H. Bahadir Sahin & Kurc{s}ad Derinkuyu, 2017. "Empirical comparison of three models for determining market clearing prices in Turkish day-ahead electricity market," Papers 1712.00235, arXiv.org.
    18. Jérôme De Boeck & Luce Brotcorne & Bernard Fortz, 2022. "Strategic bidding in price coupled regions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(3), pages 365-407, June.
    19. Lang, Lukas Maximilian & Dallinger, Bettina & Lettner, Georg, 2020. "The meaning of flow-based market coupling on redispatch measures in Austria," Energy Policy, Elsevier, vol. 136(C).
    20. Han, Jinil & Papavasiliou, Anthony, 2015. "Congestion management through topological corrections: A case study of Central Western Europe," Energy Policy, Elsevier, vol. 86(C), pages 470-482.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1711.07731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.