IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v15y2018i2d10.1007_s10287-018-0299-8.html
   My bibliography  Save this article

ALM models based on second order stochastic dominance

Author

Listed:
  • Maram Alwohaibi

    (Brunel University London)

  • Diana Roman

    (Brunel University College of Engineering Design and Physical Sciences)

Abstract

We propose asset and liability management models in which the risk of underfunding is modelled based on the concept of stochastic dominance. Investment decisions are taken such that the distribution of the funding ratio, that is, the ratio of asset to liabilities, is non-dominated with respect to second order stochastic dominance. In addition, the funding ratio distribution is close in an optimal sense to a user-specified target distribution. Interesting results are obtained when the target distribution is degenerate; in this case, we can obtain equivalent risk minimisation models, with risk defined as expected shortfall or as worst case loss. As an application, we consider the financial planning problem of a defined benefit pension fund in Saudi Arabia.

Suggested Citation

  • Maram Alwohaibi & Diana Roman, 2018. "ALM models based on second order stochastic dominance," Computational Management Science, Springer, vol. 15(2), pages 187-211, June.
  • Handle: RePEc:spr:comgts:v:15:y:2018:i:2:d:10.1007_s10287-018-0299-8
    DOI: 10.1007/s10287-018-0299-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-018-0299-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-018-0299-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Escudero, Laureano F. & Garín, María Araceli & Merino, María & Pérez, Gloria, 2016. "On time stochastic dominance induced by mixed integer-linear recourse in multistage stochastic programs," European Journal of Operational Research, Elsevier, vol. 249(1), pages 164-176.
    2. Willem Klein Haneveld & Matthijs Streutker & Maarten Vlerk, 2010. "An ALM model for pension funds using integrated chance constraints," Annals of Operations Research, Springer, vol. 177(1), pages 47-62, June.
    3. Kouwenberg, Roy, 2001. "Scenario generation and stochastic programming models for asset liability management," European Journal of Operational Research, Elsevier, vol. 134(2), pages 279-292, October.
    4. Dentcheva, Darinka & Ruszczynski, Andrzej, 2006. "Portfolio optimization with stochastic dominance constraints," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 433-451, February.
    5. Miloš Kopa & Vittorio Moriggia & Sebastiano Vitali, 2018. "Individual optimal pension allocation under stochastic dominance constraints," Annals of Operations Research, Springer, vol. 260(1), pages 255-291, January.
    6. David R. Cariño & Terry Kent & David H. Myers & Celine Stacy & Mike Sylvanus & Andrew L. Turner & Kouji Watanabe & William T. Ziemba, 1994. "The Russell-Yasuda Kasai Model: An Asset/Liability Model for a Japanese Insurance Company Using Multistage Stochastic Programming," Interfaces, INFORMS, vol. 24(1), pages 29-49, February.
    7. Martin R. Young, 1998. "A Minimax Portfolio Selection Rule with Linear Programming Solution," Management Science, INFORMS, vol. 44(5), pages 673-683, May.
    8. Fishburn, Peter C, 1977. "Mean-Risk Analysis with Risk Associated with Below-Target Returns," American Economic Review, American Economic Association, vol. 67(2), pages 116-126, March.
    9. J. G. Kallberg & R. W. White & W. T. Ziemba, 1982. "Short Term Financial Planning under Uncertainty," Management Science, INFORMS, vol. 28(6), pages 670-682, June.
    10. Willem Haneveld & Maarten Vlerk, 2006. "Integrated Chance Constraints: Reduced Forms and an Algorithm," Computational Management Science, Springer, vol. 3(4), pages 245-269, September.
    11. Dempster, M. A. H. & Germano, M. & Medova, E. A. & Villaverde, M., 2003. "Global Asset Liability Management," British Actuarial Journal, Cambridge University Press, vol. 9(1), pages 137-195, April.
    12. Alois Geyer & William T. Ziemba, 2008. "The Innovest Austrian Pension Fund Financial Planning Model InnoALM," Operations Research, INFORMS, vol. 56(4), pages 797-810, August.
    13. M. I. Kusy & W. T. Ziemba, 1986. "A Bank Asset and Liability Management Model," Operations Research, INFORMS, vol. 34(3), pages 356-376, June.
    14. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    15. Xi Yang & Jacek Gondzio & Andreas Grothey, 2010. "Asset liability management modelling with risk control by stochastic dominance," Journal of Asset Management, Palgrave Macmillan, vol. 11(2), pages 73-93, June.
    16. David R. Cariño & William T. Ziemba, 1998. "Formulation of the Russell-Yasuda Kasai Financial Planning Model," Operations Research, INFORMS, vol. 46(4), pages 433-449, August.
    17. John M. Mulvey & Gordon Gould & Clive Morgan, 2000. "An Asset and Liability Management System for Towers Perrin-Tillinghast," Interfaces, INFORMS, vol. 30(1), pages 96-114, February.
    18. Post, Thierry & Kopa, Miloš, 2013. "General linear formulations of stochastic dominance criteria," European Journal of Operational Research, Elsevier, vol. 230(2), pages 321-332.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Audrius Kabašinskas & Kristina Šutienė & Miloš Kopa & Kęstutis Lukšys & Kazimieras Bagdonas, 2020. "Dominance-Based Decision Rules for Pension Fund Selection under Different Distributional Assumptions," Mathematics, MDPI, vol. 8(5), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastiano Vitali & Vittorio Moriggia, 2021. "Pension fund management with investment certificates and stochastic dominance," Annals of Operations Research, Springer, vol. 299(1), pages 273-292, April.
    2. Moriggia, Vittorio & Kopa, Miloš & Vitali, Sebastiano, 2019. "Pension fund management with hedging derivatives, stochastic dominance and nodal contamination," Omega, Elsevier, vol. 87(C), pages 127-141.
    3. Alaeddine Faleh, 2011. "Un modèle de programmation stochastique pour l'allocation stratégique d'actifs d'un régime de retraite partiellement provisionné," Working Papers hal-00561965, HAL.
    4. Christopher Bayliss & Marti Serra & Armando Nieto & Angel A. Juan, 2020. "Combining a Matheuristic with Simulation for Risk Management of Stochastic Assets and Liabilities," Risks, MDPI, vol. 8(4), pages 1-14, December.
    5. ManMohan S. Sodhi, 2005. "LP Modeling for Asset-Liability Management: A Survey of Choices and Simplifications," Operations Research, INFORMS, vol. 53(2), pages 181-196, April.
    6. Audrius Kabašinskas & Kristina Šutienė & Miloš Kopa & Kęstutis Lukšys & Kazimieras Bagdonas, 2020. "Dominance-Based Decision Rules for Pension Fund Selection under Different Distributional Assumptions," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    7. Amy V. Puelz, 2002. "A Stochastic Convergence Model for Portfolio Selection," Operations Research, INFORMS, vol. 50(3), pages 462-476, June.
    8. Youssouf A. F. Toukourou & Franc{c}ois Dufresne, 2015. "ON Integrated Chance Constraints in ALM for Pension Funds," Papers 1503.05343, arXiv.org.
    9. Birge, John R. & Júdice, Pedro, 2013. "Long-term bank balance sheet management: Estimation and simulation of risk-factors," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4711-4720.
    10. Yu Mei & Zhiping Chen & Jia Liu & Bingbing Ji, 2022. "Multi-stage portfolio selection problem with dynamic stochastic dominance constraints," Journal of Global Optimization, Springer, vol. 83(3), pages 585-613, July.
    11. Miloš Kopa & Tomáš Rusý, 2021. "A decision-dependent randomness stochastic program for asset–liability management model with a pricing decision," Annals of Operations Research, Springer, vol. 299(1), pages 241-271, April.
    12. Ferstl, Robert & Weissensteiner, Alex, 2011. "Asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 182-192, January.
    13. Giorgio Consigli & Vittorio Moriggia & Sebastiano Vitali, 2020. "Long-term individual financial planning under stochastic dominance constraints," Annals of Operations Research, Springer, vol. 292(2), pages 973-1000, September.
    14. Gong, Jiangyue & Gujjula, Krishna Reddy & Ntaimo, Lewis, 2023. "An integrated chance constraints approach for optimal vaccination strategies under uncertainty for COVID-19," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    15. Jacek Gondzio & Roy Kouwenberg, 2001. "High-Performance Computing for Asset-Liability Management," Operations Research, INFORMS, vol. 49(6), pages 879-891, December.
    16. John M. Mulvey & Koray D. Simsek & Zhuojuan Zhang & Frank J. Fabozzi & William R. Pauling, 2008. "OR PRACTICE---Assisting Defined-Benefit Pension Plans," Operations Research, INFORMS, vol. 56(5), pages 1066-1078, October.
    17. Jia Liu & Zhiping Chen & Giorgio Consigli, 2021. "Interval-based stochastic dominance: theoretical framework and application to portfolio choices," Annals of Operations Research, Springer, vol. 307(1), pages 329-361, December.
    18. Amita Sharma & Aparna Mehra, 2017. "Financial analysis based sectoral portfolio optimization under second order stochastic dominance," Annals of Operations Research, Springer, vol. 256(1), pages 171-197, September.
    19. Mitra, Sovan & Lim, Sungmook & Karathanasopoulos, Andreas, 2019. "Regression based scenario generation: Applications for performance management," Operations Research Perspectives, Elsevier, vol. 6(C).
    20. John Board & Charles Sutcliffe, 2007. "Joined-Up Pensions Policy in the UK: An Asset-Liability Model for Simultaneously Determining the Asset Allocation and Contribution Rate," Economic Analysis, Institute of Economic Sciences, vol. 40(3-4), pages 87-118.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:15:y:2018:i:2:d:10.1007_s10287-018-0299-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.