IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v49y2001i6p879-891.html
   My bibliography  Save this article

High-Performance Computing for Asset-Liability Management

Author

Listed:
  • Jacek Gondzio

    (Department of Mathematics & Statistics, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom)

  • Roy Kouwenberg

    (Erasmus University Rotterdam, Erasmus Center for Financial Research, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands)

Abstract

Financial institutions require sophisticated tools for risk management. For companywide risk management, both sides of the balance sheet should be considered, resulting in an integrated asset-liability management approach. Stochastic programming models suit these needs well and have already been applied in the field of asset-liability management to improve financial operations and risk management. The dynamic aspect of the financial planning problems inevitably leads to multiple decision stages (trading dates) in the stochastic program and results in an explosion of dimensionality. In this paper we show that dedicated model generation, specialized solution techniques based on decomposition and high-performance computing, are the essential elements to tackle these large-scale financial planning problems. It turns out that memory management is a major bottleneck when solving very large problems, given an efficient solution approach and a parallel computing facility. We report on the solution of an asset-liability management model for an actual Dutch pension fund with 4,826,809 scenarios; 12,469,250 constraints; and 24,938,502 variables; which is the largest stochastic linear program ever solved. A closer look at the optimal decisions reveals that the initial asset mix is more stable for larger models, demonstrating the potential benefits of the high-performance computing approach for ALM.

Suggested Citation

  • Jacek Gondzio & Roy Kouwenberg, 2001. "High-Performance Computing for Asset-Liability Management," Operations Research, INFORMS, vol. 49(6), pages 879-891, December.
  • Handle: RePEc:inm:oropre:v:49:y:2001:i:6:p:879-891
    DOI: 10.1287/opre.49.6.879.10015
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.49.6.879.10015
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.49.6.879.10015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David R. Cariño & Terry Kent & David H. Myers & Celine Stacy & Mike Sylvanus & Andrew L. Turner & Kouji Watanabe & William T. Ziemba, 1994. "The Russell-Yasuda Kasai Model: An Asset/Liability Model for a Japanese Insurance Company Using Multistage Stochastic Programming," Interfaces, INFORMS, vol. 24(1), pages 29-49, February.
    2. G. Consigli & M. Dempster, 1998. "Dynamic stochastic programmingfor asset-liability management," Annals of Operations Research, Springer, vol. 81(0), pages 131-162, June.
    3. John M. Mulvey & Andrzej Ruszczyński, 1995. "A New Scenario Decomposition Method for Large-Scale Stochastic Optimization," Operations Research, INFORMS, vol. 43(3), pages 477-490, June.
    4. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    5. Gondzio, Jacek, 1995. "HOPDM (version 2.12) -- A fast LP solver based on a primal-dual interior point method," European Journal of Operational Research, Elsevier, vol. 85(1), pages 221-225, August.
    6. Kouwenberg, Roy, 2001. "Scenario generation and stochastic programming models for asset liability management," European Journal of Operational Research, Elsevier, vol. 134(2), pages 279-292, October.
    7. John M. Mulvey & Hercules Vladimirou, 1992. "Stochastic Network Programming for Financial Planning Problems," Management Science, INFORMS, vol. 38(11), pages 1642-1664, November.
    8. John R. Birge & Liqun Qi, 1988. "Computing Block-Angular Karmarkar Projections with Applications to Stochastic Programming," Management Science, INFORMS, vol. 34(12), pages 1472-1479, December.
    9. Birge, John R. & Louveaux, Francois V., 1988. "A multicut algorithm for two-stage stochastic linear programs," European Journal of Operational Research, Elsevier, vol. 34(3), pages 384-392, March.
    10. John R. Birge, 1985. "Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs," Operations Research, INFORMS, vol. 33(5), pages 989-1007, October.
    11. M. I. Kusy & W. T. Ziemba, 1986. "A Bank Asset and Liability Management Model," Operations Research, INFORMS, vol. 34(3), pages 356-376, June.
    12. Stephen P. Bradley & Dwight B. Crane, 1972. "A Dynamic Model for Bond Portfolio Management," Management Science, INFORMS, vol. 19(2), pages 139-151, October.
    13. Emmanuel Fragnière & Jacek Gondzio & Jean-Philippe Vial, 2000. "Building and Solving Large-Scale Stochastic Programs on an Affordable Distributed Computing System," Annals of Operations Research, Springer, vol. 99(1), pages 167-187, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. ManMohan S. Sodhi, 2005. "LP Modeling for Asset-Liability Management: A Survey of Choices and Simplifications," Operations Research, INFORMS, vol. 53(2), pages 181-196, April.
    2. Sodhi, ManMohan S. & Tang, Christopher S., 2009. "Modeling supply-chain planning under demand uncertainty using stochastic programming: A survey motivated by asset-liability management," International Journal of Production Economics, Elsevier, vol. 121(2), pages 728-738, October.
    3. Diana Barro & Elio Canestrelli, 2005. "Time and nodal decomposition with implicit non-anticipativity constraints in dynamic portfolio optimization," GE, Growth, Math methods 0510011, University Library of Munich, Germany.
    4. Jacek Gondzio & Andreas Grothey, 2007. "Parallel interior-point solver for structured quadratic programs: Application to financial planning problems," Annals of Operations Research, Springer, vol. 152(1), pages 319-339, July.
    5. Arjan Berkelaar & Roy Kouwenberg, 2011. "A Liability-Relative Drawdown Approach to Pension Asset Liability Management," Palgrave Macmillan Books, in: Gautam Mitra & Katharina Schwaiger (ed.), Asset and Liability Management Handbook, chapter 14, pages 352-382, Palgrave Macmillan.
    6. Pieter Klaassen, 1998. "Financial Asset-Pricing Theory and Stochastic Programming Models for Asset/Liability Management: A Synthesis," Management Science, INFORMS, vol. 44(1), pages 31-48, January.
    7. Amy V. Puelz, 2002. "A Stochastic Convergence Model for Portfolio Selection," Operations Research, INFORMS, vol. 50(3), pages 462-476, June.
    8. Libo Yin & Liyan Han, 2013. "Options strategies for international portfolios with overall risk management via multi-stage stochastic programming," Annals of Operations Research, Springer, vol. 206(1), pages 557-576, July.
    9. Barro, Diana & Canestrelli, Elio, 2005. "Dynamic portfolio optimization: Time decomposition using the Maximum Principle with a scenario approach," European Journal of Operational Research, Elsevier, vol. 163(1), pages 217-229, May.
    10. Sebastiano Vitali & Vittorio Moriggia, 2021. "Pension fund management with investment certificates and stochastic dominance," Annals of Operations Research, Springer, vol. 299(1), pages 273-292, April.
    11. Klaassen, Pieter, 1997. "Solving stochastic programming models for asset/liability management using iterative disaggregation," Serie Research Memoranda 0010, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    12. Birge, John R. & Júdice, Pedro, 2013. "Long-term bank balance sheet management: Estimation and simulation of risk-factors," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4711-4720.
    13. Geyer, Alois & Hanke, Michael & Weissensteiner, Alex, 2010. "No-arbitrage conditions, scenario trees, and multi-asset financial optimization," European Journal of Operational Research, Elsevier, vol. 206(3), pages 609-613, November.
    14. Mulvey, John M. & Rosenbaum, Daniel P. & Shetty, Bala, 1997. "Strategic financial risk management and operations research," European Journal of Operational Research, Elsevier, vol. 97(1), pages 1-16, February.
    15. de Lange, Petter E. & Fleten, Stein-Erik & Gaivoronski, Alexei A., 2004. "Modeling financial reinsurance in the casualty insurance business via stochastic programming," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 991-1012, February.
    16. Moriggia, Vittorio & Kopa, Miloš & Vitali, Sebastiano, 2019. "Pension fund management with hedging derivatives, stochastic dominance and nodal contamination," Omega, Elsevier, vol. 87(C), pages 127-141.
    17. Klaassen, Pieter, 1997. "Discretized reality and spurious profits in stochastic programming models for asset/liability management," European Journal of Operational Research, Elsevier, vol. 101(2), pages 374-392, September.
    18. Oguzsoy, Cemal Berk & Guven, Sibel, 1997. "Bank asset and liability management under uncertainty," European Journal of Operational Research, Elsevier, vol. 102(3), pages 575-600, November.
    19. Vladimirou, Hercules, 1998. "Computational assessment of distributed decomposition methods for stochastic linear programs," European Journal of Operational Research, Elsevier, vol. 108(3), pages 653-670, August.
    20. Gulpinar, Nalan & Rustem, Berc & Settergren, Reuben, 2004. "Simulation and optimization approaches to scenario tree generation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1291-1315, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:49:y:2001:i:6:p:879-891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.