IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v35y2011i1p182-192.html
   My bibliography  Save this article

Asset-liability management under time-varying investment opportunities

Author

Listed:
  • Ferstl, Robert
  • Weissensteiner, Alex

Abstract

Stochastic linear programming is a suitable numerical approach for solving practical asset-liability management problems. In this paper, we consider a multi-stage setting under time-varying investment opportunities and propose a decomposition of the benefits in dynamic re-allocation and predictability effects. We use a first-order unrestricted vector autoregressive process to model asset returns and state variables and include, in addition to equity returns and dividend-price ratios, Nelson/Siegel parameters to account for the evolution of the yield curve. The objective is to minimize the Conditional Value at Risk of shareholder value, i.e., the difference between the mark-to-market value of (financial) assets and the present value of future liabilities.

Suggested Citation

  • Ferstl, Robert & Weissensteiner, Alex, 2011. "Asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 182-192, January.
  • Handle: RePEc:eee:jbfina:v:35:y:2011:i:1:p:182-192
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-4266(10)00294-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. John Y. Campbell & Yeung Lewis Chanb & M. Viceira, 2013. "A multivariate model of strategic asset allocation," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 39, pages 809-848, World Scientific Publishing Co. Pte. Ltd..
    3. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    4. Andrew Ang & Geert Bekaert, 2007. "Stock Return Predictability: Is it There?," Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
    5. Consiglio, Andrea & Saunders, David & Zenios, Stavros A., 2006. "Asset and liability management for insurance products with minimum guarantees: The UK case," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 645-667, February.
    6. Brennan, Michael J. & Schwartz, Eduardo S. & Lagnado, Ronald, 1997. "Strategic asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1377-1403, June.
    7. Bertocchi, Marida & Giacometti, Rosella & Zenios, Stavros A., 2005. "Risk factor analysis and portfolio immunization in the corporate bond market," European Journal of Operational Research, Elsevier, vol. 161(2), pages 348-363, March.
    8. John Y. Campbell, Robert J. Shiller, 1988. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," The Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
    9. John H. Cochrane & Monika Piazzesi, 2005. "Bond Risk Premia," American Economic Review, American Economic Association, vol. 95(1), pages 138-160, March.
    10. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    11. Bénédicte Vidaillet & V. d'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    12. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2008. "Pricing options on scenario trees," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 283-298, February.
    13. Campbell, John Y. & Chacko, George & Rodriguez, Jorge & Viceira, Luis M., 2004. "Strategic asset allocation in a continuous-time VAR model," Journal of Economic Dynamics and Control, Elsevier, vol. 28(11), pages 2195-2214, October.
    14. Wachter, Jessica A., 2002. "Portfolio and Consumption Decisions under Mean-Reverting Returns: An Exact Solution for Complete Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(1), pages 63-91, March.
    15. Keim, Donald B. & Stambaugh, Robert F., 1986. "Predicting returns in the stock and bond markets," Journal of Financial Economics, Elsevier, vol. 17(2), pages 357-390, December.
    16. Paul A. Samuelson, 2011. "Lifetime Portfolio Selection by Dynamic Stochastic Programming," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 31, pages 465-472, World Scientific Publishing Co. Pte. Ltd..
    17. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    18. David R. Cariño & Terry Kent & David H. Myers & Celine Stacy & Mike Sylvanus & Andrew L. Turner & Kouji Watanabe & William T. Ziemba, 1994. "The Russell-Yasuda Kasai Model: An Asset/Liability Model for a Japanese Insurance Company Using Multistage Stochastic Programming," Interfaces, INFORMS, vol. 24(1), pages 29-49, February.
    19. Kim, Tong Suk & Omberg, Edward, 1996. "Dynamic Nonmyopic Portfolio Behavior," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 141-161.
    20. Jacek Gondzio & Roy Kouwenberg, 2001. "High-Performance Computing for Asset-Liability Management," Operations Research, INFORMS, vol. 49(6), pages 879-891, December.
    21. Canner, Niko & Mankiw, N Gregory & Weil, David N, 1997. "An Asset Allocation Puzzle," American Economic Review, American Economic Association, vol. 87(1), pages 181-191, March.
    22. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    23. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    24. R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, January.
    25. Jérôme B. Detemple & Ren Garcia & Marcel Rindisbacher, 2003. "A Monte Carlo Method for Optimal Portfolios," Journal of Finance, American Finance Association, vol. 58(1), pages 401-446, February.
    26. Wright, Jonathan H. & Zhou, Hao, 2009. "Bond risk premia and realized jump risk," Journal of Banking & Finance, Elsevier, vol. 33(12), pages 2333-2345, December.
    27. Yihong Xia, 2001. "Learning about Predictability: The Effects of Parameter Uncertainty on Dynamic Asset Allocation," Journal of Finance, American Finance Association, vol. 56(1), pages 205-246, February.
    28. Mulvey, John M. & Erkan, Hafize G., 2006. "Applying CVaR for decentralized risk management of financial companies," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 627-644, February.
    29. Dempster, M. A. H. & Germano, M. & Medova, E. A. & Villaverde, M., 2003. "Global Asset Liability Management," British Actuarial Journal, Cambridge University Press, vol. 9(1), pages 137-195, April.
    30. Alois Geyer & William T. Ziemba, 2008. "The Innovest Austrian Pension Fund Financial Planning Model InnoALM," Operations Research, INFORMS, vol. 56(4), pages 797-810, August.
    31. John Y. Campbell & Luis M. Viceira, 1999. "Consumption and Portfolio Decisions when Expected Returns are Time Varying," The Quarterly Journal of Economics, Oxford University Press, vol. 114(2), pages 433-495.
    32. Kessler, Stephan & Scherer, Bernd, 2009. "Varying risk premia in international bond markets," Journal of Banking & Finance, Elsevier, vol. 33(8), pages 1361-1375, August.
    33. Ralph S. J. Koijen & Theo E. Nijman & Bas J. M. Werker, 2010. "When Can Life Cycle Investors Benefit from Time-Varying Bond Risk Premia?," Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 741-780, February.
    34. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    35. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    36. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    37. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, February.
    38. Quaranta, Anna Grazia & Zaffaroni, Alberto, 2008. "Robust optimization of conditional value at risk and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2046-2056, October.
    39. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Owadally, Iqbal & Jang, Chul & Clare, Andrew, 2021. "Optimal investment for a retirement plan with deferred annuities," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 51-62.
    2. Libo Yin & Liyan Han, 2013. "Options strategies for international portfolios with overall risk management via multi-stage stochastic programming," Annals of Operations Research, Springer, vol. 206(1), pages 557-576, July.
    3. Maria Cristina Arcuri & Gino Gandolfi & Fabrizio Laurini, 2023. "Robust portfolio optimization for banking foundations: a CVaR approach for asset allocation with mandatory constraints," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 557-581, June.
    4. Yan, Tingjin & Han, Jinhui & Ma, Guiyuan & Siu, Chi Chung, 2023. "Dynamic asset-liability management with frictions," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 57-83.
    5. Duarte, Thiago B. & Valladão, Davi M. & Veiga, Álvaro, 2017. "Asset liability management for open pension schemes using multistage stochastic programming under Solvency-II-based regulatory constraints," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 177-188.
    6. Agnieszka Konicz & David Pisinger & Alex Weissensteiner, 2015. "Optimal annuity portfolio under inflation risk," Computational Management Science, Springer, vol. 12(3), pages 461-488, July.
    7. Grzegorz Halaj & Sofia Priazhkina, 2021. "Stressed but not Helpless: Strategic Behaviour of Banks Under Adverse Market Conditions," Staff Working Papers 21-35, Bank of Canada.
    8. Owadally, Iqbal & Jang, Chul & Clare, Andrew, 2021. "Optimal investment for a retirement plan with deferred annuities allowing for inflation and labour income risk," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1132-1146.
    9. Kourosh Rasmussen & Claus Madsen & Rolf Poulsen, 2014. "Can home-owners benefit from stochastic programming models? A study of mortgage choice in Denmark," Computational Management Science, Springer, vol. 11(1), pages 5-23, January.
    10. Schuhmacher, Frank & Eling, Martin, 2011. "Sufficient conditions for expected utility to imply drawdown-based performance rankings," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2311-2318, September.
    11. Ioan Trenca & Daniela Zapodeanu & Mihail Ioan Cociuba, 2017. "Assets Liabilities Models - A Literature Review," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 335-345, July.
    12. Gülpinar, Nalan & Pachamanova, Dessislava, 2013. "A robust optimization approach to asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2031-2041.
    13. Libo Yin & Liyan Han, 2020. "International Assets Allocation with Risk Management via Multi-Stage Stochastic Programming," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 383-405, February.
    14. Platanakis, Emmanouil & Sutcliffe, Charles, 2016. "Pension scheme redesign and wealth redistribution between the members and sponsor: The USS rule change in October 2011," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 14-28.
    15. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    16. Nalan Gülpınar & Dessislava Pachamanova & Ethem Çanakoğlu, 2016. "A robust asset–liability management framework for investment products with guarantees," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(4), pages 1007-1041, October.
    17. Agnieszka Karolina Konicz & David Pisinger & Alex Weissensteiner, 2016. "Optimal retirement planning with a focus on single and joint life annuities," Quantitative Finance, Taylor & Francis Journals, vol. 16(2), pages 275-295, February.
    18. Anne Pedersen & Alex Weissensteiner & Rolf Poulsen, 2013. "Financial planning for young households," Annals of Operations Research, Springer, vol. 205(1), pages 55-76, May.
    19. Grzegorz Hałaj, 2016. "Dynamic Balance Sheet Model With Liquidity Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(07), pages 1-37, November.
    20. Christopher Bayliss & Marti Serra & Armando Nieto & Angel A. Juan, 2020. "Combining a Matheuristic with Simulation for Risk Management of Stochastic Assets and Liabilities," Risks, MDPI, vol. 8(4), pages 1-14, December.
    21. Abdul Aziz, Nor Syahilla & Vrontos, Spyridon & M. Hasim, Haslifah, 2019. "Evaluation of multivariate GARCH models in an optimal asset allocation framework," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 568-596.
    22. Mark Freeman & Ben Groom, 2015. "Using equity premium survey data to estimate future wealth," Review of Quantitative Finance and Accounting, Springer, vol. 45(4), pages 665-693, November.
    23. de Haan, Leo & Kakes, Jan, 2011. "Momentum or contrarian investment strategies: Evidence from Dutch institutional investors," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2245-2251, September.
    24. Pejman Peykani & Mostafa Sargolzaei & Mohammad Hashem Botshekan & Camelia Oprean-Stan & Amir Takaloo, 2023. "Optimization of Asset and Liability Management of Banks with Minimum Possible Changes," Mathematics, MDPI, vol. 11(12), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jessica A. Wachter, 2010. "Asset Allocation," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 175-206, December.
    2. Daniel Giamouridis & Athanasios Sakkas & Nikolaos Tessaromatis, 2017. "Dynamic Asset Allocation with Liabilities," European Financial Management, European Financial Management Association, vol. 23(2), pages 254-291, March.
    3. Guidolin, Massimo & Timmermann, Allan, 2007. "Asset allocation under multivariate regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3503-3544, November.
    4. Jakub W. Jurek & Luis M. Viceira, 2011. "Optimal Value and Growth Tilts in Long-Horizon Portfolios," Review of Finance, European Finance Association, vol. 15(1), pages 29-74.
    5. Mark E. Wohar & David E. Rapach, 2005. "Return Predictability and the Implied Intertemporal Hedging Demands for Stocks and Bonds: International Evidence," Computing in Economics and Finance 2005 329, Society for Computational Economics.
    6. Spierdijk, Laura & Umar, Zaghum, 2014. "Stocks for the long run? Evidence from emerging markets," Journal of International Money and Finance, Elsevier, vol. 47(C), pages 217-238.
    7. Wachter, Jessica A. & Warusawitharana, Missaka, 2009. "Predictable returns and asset allocation: Should a skeptical investor time the market?," Journal of Econometrics, Elsevier, vol. 148(2), pages 162-178, February.
    8. John Y. Campbell & Yeung Lewis Chanb & M. Viceira, 2013. "A multivariate model of strategic asset allocation," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 39, pages 809-848, World Scientific Publishing Co. Pte. Ltd..
    9. Maenhout, Pascal J., 2006. "Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium," Journal of Economic Theory, Elsevier, vol. 128(1), pages 136-163, May.
    10. Hui Chen & Nengjiu Ju & Jianjun Miao, 2014. "Dynamic Asset Allocation with Ambiguous Return Predictability," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 17(4), pages 799-823, October.
    11. Larsen, Linda Sandris & Munk, Claus, 2012. "The costs of suboptimal dynamic asset allocation: General results and applications to interest rate risk, stock volatility risk, and growth/value tilts," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 266-293.
    12. Engsted, Tom & Pedersen, Thomas Q., 2012. "Return predictability and intertemporal asset allocation: Evidence from a bias-adjusted VAR model," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 241-253.
    13. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    14. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    15. Sørensen, Carsten & Trolle, Anders Bjerre, 2006. "Dynamic asset allocation and latent variables," Working Papers 2004-8, Copenhagen Business School, Department of Finance.
    16. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
    17. Legendre, François & Togola, Djibril, 2016. "Explicit solutions to dynamic portfolio choice problems: A continuous-time detour," Economic Modelling, Elsevier, vol. 58(C), pages 627-641.
    18. Alois Geyer & Michael Hanke & Alex Weissensteiner, 2009. "A stochastic programming approach for multi-period portfolio optimization," Computational Management Science, Springer, vol. 6(2), pages 187-208, May.
    19. Kaminski, Kathryn M. & Lo, Andrew W., 2014. "When do stop-loss rules stop losses?," Journal of Financial Markets, Elsevier, vol. 18(C), pages 234-254.
    20. Gülpinar, Nalan & Pachamanova, Dessislava, 2013. "A robust optimization approach to asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2031-2041.

    More about this item

    Keywords

    Asset-liability management Predictability Stochastic programming Scenario generation VAR process;

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:35:y:2011:i:1:p:182-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.