IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v161y2020i4d10.1007_s10584-020-02722-5.html
   My bibliography  Save this article

Global bioclimatic suitability for the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and potential co-occurrence with major host crops under climate change scenarios

Author

Listed:
  • Daniel Augusta Zacarias

    (Universidade Eduardo Mondlane)

Abstract

The fall armyworm, Spodoptera frugiperda, is a highly invasive species native to North America that is rapidly spreading to other parts of the world. Since its first discovery outside its native range, the species has rapidly spread to more than 26 countries in Africa and has been recently discovered in India, demonstrating its high potential to spread and invade. This species can have massive damage to crops, especially maize, posing major socioeconomic challenges. While its spread is attributed to transportation in fruits and vegetables, its invasiveness is attributed to its high capacity to adapt in different environments. With expected climate change scenarios, it is possible that this species will invade other areas to the planet, thus increasing the damage to major agricultural crops. This paper aims to understand the global potential for the spread of the species and its associated impacts on major host plants, globally. For this, the article is based on modelling the distribution of species, combining records of occurrence of species globally and bioclimatic variables to identify the areas that are climatically suitable for species in present and future scenarios under climate change. Simulations indicate that there is an enormous climatic potential for the spread of the species, with potential increases between 12 and 44% in the future, mostly affecting border areas between the USA and Canada, Sub-Saharan Africa and central Europe. This spread will increase the potential for interactions between the fall armyworm and its main host plants, thus increasing the potential crop damage globally.

Suggested Citation

  • Daniel Augusta Zacarias, 2020. "Global bioclimatic suitability for the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and potential co-occurrence with major host crops under climate change scenarios," Climatic Change, Springer, vol. 161(4), pages 555-566, August.
  • Handle: RePEc:spr:climat:v:161:y:2020:i:4:d:10.1007_s10584-020-02722-5
    DOI: 10.1007/s10584-020-02722-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02722-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02722-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Griffith, Daniel M. & Veech, Joseph A. & Marsh, Charles J., 2016. "cooccur: Probabilistic Species Co-Occurrence Analysis in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(c02).
    2. Gama, M. & Crespo, D. & Dolbeth, M. & Anastácio, P., 2016. "Predicting global habitat suitability for Corbicula fluminea using species distribution models: The importance of different environmental datasets," Ecological Modelling, Elsevier, vol. 319(C), pages 163-169.
    3. Chen, Shuai & Chen, Xiaoguang & Xu, Jintao, 2016. "Impacts of climate change on agriculture: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 76(C), pages 105-124.
    4. Steven Haggblade & Bart Minten & Carl Pray & Thomas Reardon & David Zilberman, 2017. "The Herbicide Revolution in Developing Countries: Patterns, Causes, and Implications," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 29(3), pages 533-559, July.
    5. Elodie Blanc & John Reilly, 2017. "Approaches to Assessing Climate Change Impacts on Agriculture: An Overview of the Debate," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 247-257.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Lodovica Gullino & Ramon Albajes & Ibrahim Al-Jboory & Francislene Angelotti & Subrata Chakraborty & Karen A. Garrett & Brett Phillip Hurley & Peter Juroszek & Ralf Lopian & Khaled Makkouk & Xub, 2022. "Climate Change and Pathways Used by Pests as Challenges to Plant Health in Agriculture and Forestry," Sustainability, MDPI, vol. 14(19), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate change and agriculture: farmer adaptation to extreme heat," IFS Working Papers W18/06, Institute for Fiscal Studies.
    2. Yan Chen & Xiaohong Chen & Hongshan Ai & Xiaoqing Tan, 2022. "Temperature and Migration Intention: Evidence from the Unified National Graduate Entrance Examination in China," IJERPH, MDPI, vol. 19(16), pages 1-23, August.
    3. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2020. "Climate Change and the Distribution of Agricultural Output," Working Papers 2003E, University of Ottawa, Department of Economics.
    4. Kung, Chih-Chun & Wu, Tao, 2021. "Influence of water allocation on bioenergy production under climate change: A stochastic mathematical programming approach," Energy, Elsevier, vol. 231(C).
    5. Yoro Diallo & Sébastien Marchand & Etienne Espagne, 2019. "Impacts of extreme events on technical efficiency in Vietnamese agriculture," CIRED Working Papers halshs-02080285, HAL.
    6. Chen, Xiaoguang & Cui, Xiaomeng & Gao, Jing, 2023. "Differentiated Agricultural Sensitivity and Adaptability to Rising Temperatures across Regions and Sectors in China," 2023 Annual Meeting, July 23-25, Washington D.C. 335522, Agricultural and Applied Economics Association.
    7. Chen, Xiaoguang, 2016. "Economic potential of biomass supply from crop residues in China," Applied Energy, Elsevier, vol. 166(C), pages 141-149.
    8. Yuquan W. Zhang & Jianhong E. Mu & Mark Musumba & Bruce A. McCarl & Xiaokun Gu & Yuanfei Zhou & Zhengwei Cao & Qiang Li, 2018. "The Role of Climate Factors in Shaping China’s Crop Mix: An Empirical Exploration," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    9. Seungki Lee & Yongjie Ji & GianCarlo Moschini, 2021. "Agricultural Innovation and Adaptation to Climate Change: Insights from Genetically Engineered Maize," Center for Agricultural and Rural Development (CARD) Publications 21-wp616, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    10. Michelson, Hope & Gourlay, Sydney & Lybbert, Travis & Wollburg, Philip, 2023. "Review: Purchased agricultural input quality and small farms," Food Policy, Elsevier, vol. 116(C).
    11. Candice L Swift & Mirza Isanovic & Karlen E Correa Velez & Sarah C Sellers & R Sean Norman, 2022. "Wastewater surveillance of SARS-CoV-2 mutational profiles at a university and its surrounding community reveals a 20G outbreak on campus," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-13, April.
    12. Shuai Chen & Xiaoguang Chen & Jintao Xu, 2016. "Assessing the impacts of temperature variations on rice yield in China," Climatic Change, Springer, vol. 138(1), pages 191-205, September.
    13. Yong Liu & Jorge Ruiz-Menjivar & Junbiao Zhang, 2023. "Do soil nutrient management practices improve climate resilience? Empirical evidence from rice farmers in central China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 10029-10054, September.
    14. Kung, Chih-Chun & Cao, Xiaoyong & Choi, Yongrok & Kung, Shan-Shan, 2019. "A stochastic analysis of cropland utilization and resource allocation under climate change," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    15. Tsegaye Ginbo, 2022. "Heterogeneous impacts of climate change on crop yields across altitudes in Ethiopia," Climatic Change, Springer, vol. 170(1), pages 1-21, January.
    16. Manamboba Mitélama Balaka & Koffi Yovo, 2023. "Effet du changement climatique sur la production vivriere au Togo," African Development Review, African Development Bank, vol. 35(1), pages 11-23, March.
    17. Etienne ESPAGNE & Yoro DIALLO & Sébastien MARCHAND, 2019. "Impacts of Extreme Climate Events on Technical Efficiency in Vietnamese Agriculture," Working Paper c1221ee7-5311-4af0-b1b4-3, Agence française de développement.
    18. Fontes, Francisco & Gorst, Ashley & Palmer, Charles, 2020. "Does choice of drought index influence estimates of drought-induced rice losses in India?," Environment and Development Economics, Cambridge University Press, vol. 25(5), pages 459-481, October.
    19. Chen, Xiaoguang & Chen, Shuai, 2018. "China feels the heat: negative impacts of high temperatures on China’s rice sector," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(4), October.
    20. Wenjian He & Yiyang Liu & Huaping Sun & Farhad Taghizadeh-Hesary, 2020. "How Does Climate Change Affect Rice Yield in China?," Agriculture, MDPI, vol. 10(10), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:161:y:2020:i:4:d:10.1007_s10584-020-02722-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.