IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v160y2020i2d10.1007_s10584-020-02661-1.html
   My bibliography  Save this article

A global analysis of heat-related labour productivity losses under climate change—implications for Germany’s foreign trade

Author

Listed:
  • Nina Knittel

    (University of Graz)

  • Martin W. Jury

    (University of Graz)

  • Birgit Bednar-Friedl

    (University of Graz
    University of Graz)

  • Gabriel Bachner

    (University of Graz)

  • Andrea K. Steiner

    (University of Graz
    University of Graz)

Abstract

We investigate climate change impacts transferred via foreign trade to Germany, a country that is heavily engaged in international trade. Specifically, we look at temperature changes and the associated labour productivity losses at a global scale until 2050. We assess the effects on Germany’s imports and exports by means of a global computable general equilibrium (CGE) model. To address uncertainty, we account for three Shared Socioeconomic Pathways (SSP1, SSP2 and SSP3) and two Representative Concentration Pathways (RCP4.5 and RCP8.5) using projections from five global climate models. We find that average annual labour productivity for high intensity work declines by up to 31% for RCP4.5 (and up to 38% for RCP8.5) in Southeast Asia and the Middle East by 2050, all relative to a 2050 baseline without climate change. As a consequence, for RCP8.5, Germany’s imports from regions outside Europe are lower by up to 2.46%, while imports from within Europe partly compensate this reduction. Also, Germany’s exports to regions outside Europe are lower, but total exports increase by up to 0.16% due to higher exports to EU regions. Germany’s GDP and welfare, however, are negatively affected with a loss of up to − 0.41% and − 0.46%, respectively. The results highlight that overall positive trade effects for Germany constitute a comparative improvement rather than an absolute gain with climate change.

Suggested Citation

  • Nina Knittel & Martin W. Jury & Birgit Bednar-Friedl & Gabriel Bachner & Andrea K. Steiner, 2020. "A global analysis of heat-related labour productivity losses under climate change—implications for Germany’s foreign trade," Climatic Change, Springer, vol. 160(2), pages 251-269, May.
  • Handle: RePEc:spr:climat:v:160:y:2020:i:2:d:10.1007_s10584-020-02661-1
    DOI: 10.1007/s10584-020-02661-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02661-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02661-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angel Aguiar & Badri Narayanan & Robert McDougall, 2016. "An Overview of the GTAP 9 Data Base," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(1), pages 181-208, June.
    2. Marshall Burke & Solomon M. Hsiang & Edward Miguel, 2015. "Global non-linear effect of temperature on economic production," Nature, Nature, vol. 527(7577), pages 235-239, November.
    3. Hertel, Thomas & Hummels, David & Ivanic, Maros & Keeney, Roman, 2007. "How confident can we be of CGE-based assessments of Free Trade Agreements?," Economic Modelling, Elsevier, vol. 24(4), pages 611-635, July.
    4. Ed Day & Sam Fankhauser & Nick Kingsmill & Hélia Costa & Anna Mavrogianni, 2019. "Upholding labour productivity under climate change: an assessment of adaptation options," Climate Policy, Taylor & Francis Journals, vol. 19(3), pages 367-385, March.
    5. Philippe Roudier & Jafet C. M. Andersson & Chantal Donnelly & Luc Feyen & Wouter Greuell & Fulco Ludwig, 2016. "Projections of future floods and hydrological droughts in Europe under a +2°C global warming," Climatic Change, Springer, vol. 135(2), pages 341-355, March.
    6. Ciscar, Juan-Carlos & Feyen, Luc & Soria, Antonio & Lavalle, Carlo & Raes, Frank & Perry, Miles & Nemry, Françoise & Demirel, Hande & Rozsai, Máté & Dosio, Alessandro & Donatelli, Marcello & Srivastav, 2014. "Climate Impacts in Europe - The JRC PESETA II Project," MPRA Paper 55725, University Library of Munich, Germany.
    7. Roberto Roson & Dominique Van der Mensbrugghe, 2012. "Climate change and economic growth: impacts and interactions," International Journal of Sustainable Economy, Inderscience Enterprises Ltd, vol. 4(3), pages 270-285.
    8. Wachsmuth, J. & Blohm, A. & Gößling-Reisemann, S. & Eickemeier, T. & Ruth, M. & Gasper, R. & Stührmann, S., 2013. "How will renewable power generation be affected by climate change? The case of a Metropolitan Region in Northwest Germany," Energy, Elsevier, vol. 58(C), pages 192-201.
    9. Oliver Schenker, 2013. "Exchanging Goods and Damages: The Role of Trade on the Distribution of Climate Change Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(2), pages 261-282, February.
    10. Roberto Roson & Martina Sartori, 2016. "Estimation of Climate Change Damage Functions for 140 Regions in the GTAP 9 Database," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(2), pages 78-115, December.
    11. Robert J. Nicholls & Abiy S. Kebede, 2012. "Indirect impacts of coastal climate change and sea-level rise: the UK example," Climate Policy, Taylor & Francis Journals, vol. 12(sup01), pages 28-52, September.
    12. Philippe Roudier & Jafet Andersson & Chantal Donnelly & Luc Feyen & Wouter Greuell & Fulco Ludwig, 2016. "Projections of future floods and hydrological droughts in Europe under a +2°C global warming," Climatic Change, Springer, vol. 135(2), pages 341-355, March.
    13. John P. Dunne & Ronald J. Stouffer & Jasmin G. John, 2013. "Reductions in labour capacity from heat stress under climate warming," Nature Climate Change, Nature, vol. 3(6), pages 563-566, June.
    14. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    15. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    16. Theodoros N. Chatzivasileiadis & Marjan W. Hofkes & Onno J. Kuik & Richard S.J. Tol, 2016. "Full economic impacts of sea level rise: loss of productive resources and transport disruptions," Working Paper Series 9916, Department of Economics, University of Sussex.
    17. Schenker, Oliver & Stephan, Gunter, 2012. "Terms-of-trade and the funding of adaptation to climate change and variability: An empirical analysis," ZEW Discussion Papers 12-056, ZEW - Leibniz Centre for European Economic Research.
    18. Rolf Golombek & Sverre Kittelsen & Ingjerd Haddeland, 2012. "Climate change: impacts on electricity markets in Western Europe," Climatic Change, Springer, vol. 113(2), pages 357-370, July.
    19. Shoven,John B. & Whalley,John, 1992. "Applying General Equilibrium," Cambridge Books, Cambridge University Press, number 9780521266550.
    20. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    21. Diana Liverman, 2016. "U.S. National climate assessment gaps and research needs: overview, the economy and the international context," Climatic Change, Springer, vol. 135(1), pages 173-186, March.
    22. Bednar-Friedl, Birgit & Schinko, Thomas & Steininger, Karl W., 2012. "The relevance of process emissions for carbon leakage: A comparison of unilateral climate policy options with and without border carbon adjustment," Energy Economics, Elsevier, vol. 34(S2), pages 168-180.
    23. Theodoros N. Chatzivasileiadis & Marjan W. Hofkes & Onno J. Kuik & Richard S.J. Tol, 2016. "Full economic impacts of sea level rise: loss of productive resources and transport disruptions," Working Paper Series 09916, Department of Economics, University of Sussex Business School.
    24. Gunnar Eskeland & Torben Mideksa, 2010. "Electricity demand in a changing climate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(8), pages 877-897, December.
    25. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    26. Sven Norman Willner & Christian Otto & Anders Levermann, 2018. "Global economic response to river floods," Nature Climate Change, Nature, vol. 8(7), pages 594-598, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Osberghaus, Daniel & Schenker, Oliver, 2022. "International trade and the transmission of temperature shocks," ZEW Discussion Papers 22-035, ZEW - Leibniz Centre for European Economic Research.
    2. Gabriele Standardi, 2023. "Exploring market-driven adaptation to climate change in a general equilibrium global trade model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(2), pages 1-29, February.
    3. Yuqiang Zhang & Drew T. Shindell, 2021. "Costs from labor losses due to extreme heat in the USA attributable to climate change," Climatic Change, Springer, vol. 164(3), pages 1-18, February.
    4. Gabriel Bachner & Daniel Lincke & Jochen Hinkel, 2022. "The macroeconomic effects of adapting to high-end sea-level rise via protection and migration," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Santeramo, Fabio Gaetano & Bozzola, Martina & Lamonaca, Emilia, 2020. "Impacts of Climate Change on Global Agri-Food Trade," 2019: Recent Advances in Applied General Equilibrium Modeling: Relevance and Application to Agricultural Trade Analysis, December 8-10, 2019, Washington, DC 339375, International Agricultural Trade Research Consortium.
    6. Mengzhen Zhao & Jason Kai Wei Lee & Tord Kjellstrom & Wenjia Cai, 2021. "Assessment of the economic impact of heat-related labor productivity loss: a systematic review," Climatic Change, Springer, vol. 167(1), pages 1-16, July.
    7. Heinisch, Katja & Holtemöller, Oliver & Schult, Christoph, 2023. "Stellungnahme "Übergreifende Kostenbetrachtung der Auswirkungen des Klimawandels in Schleswig-Holstein"," IWH Policy Notes 1/2023, Halle Institute for Economic Research (IWH).
    8. Steven J. Schuldt & Mathew R. Nicholson & Yaquarri A. Adams & Justin D. Delorit, 2021. "Weather-Related Construction Delays in a Changing Climate: A Systematic State-of-the-Art Review," Sustainability, MDPI, vol. 13(5), pages 1-25, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Standardi, 2023. "Exploring market-driven adaptation to climate change in a general equilibrium global trade model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(2), pages 1-29, February.
    2. Roberto Roson & Richard Damania, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity: an Assessment of Alternative Scenarios," IEFE Working Papers 84, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    3. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    4. Enrica Cian & Ian Sue Wing, 2019. "Global Energy Consumption in a Warming Climate," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(2), pages 365-410, February.
    5. Roson, Roberto & Damania, Richard, 2017. "The macroeconomic impact of future water scarcity," Journal of Policy Modeling, Elsevier, vol. 39(6), pages 1141-1162.
    6. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    7. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    8. Antoine Mandel & Timothy Tiggeloven & Daniel Lincke & Elco Koks & Philip Ward & Jochen Hinkel, 2021. "Risks on global financial stability induced by climate change: the case of flood risks," Climatic Change, Springer, vol. 166(1), pages 1-24, May.
    9. Roberto Roson & Richard Damania, the World Bank, Washington D.C., 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity," EcoMod2016 9167, EcoMod.
    10. Gabriel Bachner & Daniel Lincke & Jochen Hinkel, 2022. "The macroeconomic effects of adapting to high-end sea-level rise via protection and migration," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Standardi, Gabriele, 2017. "Endogenous technical change linked to international mobility of primary factors in climate change scenarios: global welfare implications using the GTAP model," Conference papers 332920, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    13. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    14. Pretis, Felix, 2021. "Exogeneity in climate econometrics," Energy Economics, Elsevier, vol. 96(C).
    15. Angel Manuel Benitez Rodriguez & Ian Michael Trotter, 2019. "Climate change scenarios for Paraguayan power demand 2017–2050," Climatic Change, Springer, vol. 156(3), pages 425-445, October.
    16. Marcus C. Sarofim & Jeremy Martinich & James E. Neumann & Jacqueline Willwerth & Zoe Kerrich & Michael Kolian & Charles Fant & Corinne Hartin, 2021. "A temperature binning approach for multi-sector climate impact analysis," Climatic Change, Springer, vol. 165(1), pages 1-18, March.
    17. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Newell, Richard G. & Prest, Brian C. & Sexton, Steven E., 2021. "The GDP-Temperature relationship: Implications for climate change damages," Journal of Environmental Economics and Management, Elsevier, vol. 108(C).
    19. Roberto Roson & Dominique van der Mensbrugghe, 2017. "Assessing Long Run Structural Change in Multi-Sector General Equilibrium Models," EcoMod2017 10257, EcoMod.
    20. Boysen-Urban, Kirsten & Philippidis, George & M'barek, Robert & Ferrari, Emanuele, 2021. "Impacts of Changes Towards More Sustainable Food Production and Consumption at the Global Level," 2021 Conference, August 17-31, 2021, Virtual 315275, International Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:160:y:2020:i:2:d:10.1007_s10584-020-02661-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.