IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v131y2015i4p691-703.html
   My bibliography  Save this article

Accounting for radiative forcing from albedo change in future global land-use scenarios

Author

Listed:
  • Andrew Jones
  • Katherine Calvin
  • William Collins
  • James Edmonds

Abstract

We demonstrate the effectiveness of a new method for quantifying radiative forcing from land use and land cover change (LULCC) within an integrated assessment model, the Global Change Assessment Model (GCAM). The method relies on geographically differentiated estimates of radiative forcing from albedo change associated with major land cover transitions derived from the Community Earth System Model. We find that conversion of 1 km 2 of woody vegetation (forest and shrublands) to non-woody vegetation (crops and grassland) yields between 0 and −0.71 nW/m 2 of globally averaged radiative forcing determined by the vegetation characteristics, snow dynamics, and atmospheric radiation environment characteristic within each of 151 regions we consider globally. Across a set of scenarios designed to span a range of potential future LULCC, we find LULCC forcing ranging from −0.06 to −0.29 W/m 2 by 2070 depending on assumptions regarding future crop yield growth and whether climate policy favors afforestation or bioenergy crops. Inclusion of this previously uncounted forcing in the policy targets driving future climate mitigation efforts leads to changes in fossil fuel emissions on the order of 1.5 PgC/yr by 2070 for a climate forcing limit of 4.5 Wm −2 , corresponding to a 12–67 % change in fossil fuel emissions depending on the scenario. Scenarios with significant afforestation must compensate for albedo-induced warming through additional emissions reductions, and scenarios with significant deforestation need not mitigate as aggressively due to albedo-induced cooling. In all scenarios considered, inclusion of albedo forcing in policy targets increases forest and shrub cover globally. Copyright Springer Science+Business Media Dordrecht (outside the USA) 2015

Suggested Citation

  • Andrew Jones & Katherine Calvin & William Collins & James Edmonds, 2015. "Accounting for radiative forcing from albedo change in future global land-use scenarios," Climatic Change, Springer, vol. 131(4), pages 691-703, August.
  • Handle: RePEc:spr:climat:v:131:y:2015:i:4:p:691-703
    DOI: 10.1007/s10584-015-1411-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-015-1411-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-015-1411-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Calvin, Katherine & Wise, Marshall & Clarke, Leon & Edmonds, James & Jones, Andrew & Thomson, Allison, 2014. "Near-term limits to mitigation: Challenges arising from contrary mitigation effects from indirect land-use change and sulfur emissions," Energy Economics, Elsevier, vol. 42(C), pages 233-239.
    2. Richard A. Betts, 2000. "Offset of the potential carbon sink from boreal forestation by decreases in surface albedo," Nature, Nature, vol. 408(6809), pages 187-190, November.
    3. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    4. Lee, Huey-Lin & Thomas Hertel & Brent Sohngen & Navin Ramankutty, 2005. "Towards An Integrated Land Use Database for Assessing the Potential for Greenhouse Gas Mitigation," GTAP Technical Papers 1900, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    5. Claudia Tebaldi & Julie Arblaster, 2014. "Pattern scaling: Its strengths and limitations, and an update on the latest model simulations," Climatic Change, Springer, vol. 122(3), pages 459-471, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eriksson, Mathilda, 2020. "Afforestation and avoided deforestation in a multi-regional integrated assessment model," Ecological Economics, Elsevier, vol. 169(C).
    2. Alice Favero & Robert Mendelsohn & Brent Sohngen, 2017. "Using forests for climate mitigation: sequester carbon or produce woody biomass?," Climatic Change, Springer, vol. 144(2), pages 195-206, September.
    3. Shenghui Zhou & Ke Wang & Shiqi Yang & Wenli Li & Yuxuan Zhang & Bin Zhang & Yiming Fu & Xiaoyan Liu & Yadi Run & Oliva Gabriel Chubwa & Guosong Zhao & Jinwei Dong & Yaoping Cui, 2020. "Warming Effort and Energy Budget Difference of Various Human Land Use Intensity: Case Study of Beijing, China," Land, MDPI, vol. 9(9), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gustavsson, Leif & Haus, Sylvia & Lundblad, Mattias & Lundström, Anders & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le & Wikberg, Per-Erik, 2017. "Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 612-624.
    2. Timothy Osborn & Craig Wallace & Ian Harris & Thomas Melvin, 2016. "Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation," Climatic Change, Springer, vol. 134(3), pages 353-369, February.
    3. Claudia Tebaldi & Michael F. Wehner, 2018. "Benefits of mitigation for future heat extremes under RCP4.5 compared to RCP8.5," Climatic Change, Springer, vol. 146(3), pages 349-361, February.
    4. Akemi Tanaka & Kiyoshi Takahashi & Hideo Shiogama & Naota Hanasaki & Yoshimitsu Masaki & Akihiko Ito & Hibiki Noda & Yasuaki Hijioka & Seita Emori, 2017. "On the scaling of climate impact indicators with global mean temperature increase: a case study of terrestrial ecosystems and water resources," Climatic Change, Springer, vol. 141(4), pages 775-782, April.
    5. Yangyang Xu & Lei Lin, 2017. "Pattern scaling based projections for precipitation and potential evapotranspiration: sensitivity to composition of GHGs and aerosols forcing," Climatic Change, Springer, vol. 140(3), pages 635-647, February.
    6. Melania Michetti & Matteo Zampieri, 2014. "Climate–Human–Land Interactions: A Review of Major Modelling Approaches," Land, MDPI, vol. 3(3), pages 1-41, July.
    7. Timothy J. Osborn & Craig J. Wallace & Ian C. Harris & Thomas M. Melvin, 2016. "Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation," Climatic Change, Springer, vol. 134(3), pages 353-369, February.
    8. Jean-Sébastien Landry & Navin Ramankutty, 2015. "Carbon Cycling, Climate Regulation, and Disturbances in Canadian Forests: Scientific Principles for Management," Land, MDPI, vol. 4(1), pages 1-36, January.
    9. Zhao, Xin & Calvin, Katherine & Wise, Marshall, 2020. "The critical role of conversion cost and comparative advantage in modeling agricultural land use change," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304204, Agricultural and Applied Economics Association.
    10. Miranda J. Fix & Daniel Cooley & Stephan R. Sain & Claudia Tebaldi, 2018. "A comparison of U.S. precipitation extremes under RCP8.5 and RCP4.5 with an application of pattern scaling," Climatic Change, Springer, vol. 146(3), pages 335-347, February.
    11. Xin Zhao & Katherine V. Calvin & Marshall A. Wise, 2020. "The Critical Role Of Conversion Cost And Comparative Advantage In Modeling Agricultural Land Use Change," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-44, February.
    12. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    13. Pascalle Smith & Georg Heinrich & Martin Suklitsch & Andreas Gobiet & Markus Stoffel & Jürg Fuhrer, 2014. "Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change," Climatic Change, Springer, vol. 127(3), pages 521-534, December.
    14. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    15. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    16. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    17. Roberto Roson & Richard Damania, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity: an Assessment of Alternative Scenarios," IEFE Working Papers 84, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    18. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    19. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    20. Zhan Chen & Yihao Wang & Ruisi Chen & Xiuya Ni & Jixin Cao, 2022. "Effects of Forest Type on Nutrient Fluxes in Throughfall, Stemflow, and Litter Leachate within Acid-Polluted Locations in Southwest China," IJERPH, MDPI, vol. 19(5), pages 1-15, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:131:y:2015:i:4:p:691-703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.