IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v118y2013i3p565-577.html
   My bibliography  Save this article

The regional nature of global challenges: a need and strategy for integrated regional modeling

Author

Listed:
  • Kathy Hibbard
  • Anthony Janetos

Abstract

In this paper, we explore the regional nature of global environmental challenges. We take a broad approach by examining the scientific foundation that is needed to support policy and decision making and identifying some of the most important barriers to progress that are truly scale-dependent. In so doing, we hope to show that understanding global environmental changes requires understanding a number of intrinsically regional phenomena, and that successful decision making likewise requires an integrated approach that accounts for a variety of regional Earth system processes—which we define to include both human activities and environmental systems that operate or interact primarily at sub-continental scales. Understanding regional processes and phenomena, including regional decision-making processes and information needs, should thus be an integral part of the global change research agenda. To address some of the key issues and challenges, we propose an integrated regional modeling approach that accounts for the dynamic interactions among physical, ecological, biogeochemical, and human processes and provides relevant information to regional decision makers and stakeholders. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Kathy Hibbard & Anthony Janetos, 2013. "The regional nature of global challenges: a need and strategy for integrated regional modeling," Climatic Change, Springer, vol. 118(3), pages 565-577, June.
  • Handle: RePEc:spr:climat:v:118:y:2013:i:3:p:565-577
    DOI: 10.1007/s10584-012-0674-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0674-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0674-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sebastian Rausch & Thomas Rutherford, 2010. "Computation of Equilibria in OLG Models with Many Heterogeneous Households," Computational Economics, Springer;Society for Computational Economics, vol. 36(2), pages 171-189, August.
    2. O'Neill, Brian C. & Ren, Xiaolin & Jiang, Leiwen & Dalton, Michael, 2012. "The effect of urbanization on energy use in India and China in the iPETS model," Energy Economics, Elsevier, vol. 34(S3), pages 339-345.
    3. J. Rice & R. Moss & P. Runci & K. Anderson & E. Malone, 2012. "Incorporating stakeholder decision support needs into an integrated regional Earth system model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(7), pages 805-819, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ian Kraucunas & Leon Clarke & James Dirks & John Hathaway & Mohamad Hejazi & Kathy Hibbard & Maoyi Huang & Chunlian Jin & Michael Kintner-Meyer & Kerstin Dam & Ruby Leung & Hong-Yi Li & Richard Moss &, 2015. "Investigating the nexus of climate, energy, water, and land at decision-relevant scales: the Platform for Regional Integrated Modeling and Analysis (PRIMA)," Climatic Change, Springer, vol. 129(3), pages 573-588, April.
    2. Zeyang Bian & Dan Liu, 2021. "A Comprehensive Review on Types, Methods and Different Regions Related to Water–Energy–Food Nexus," IJERPH, MDPI, vol. 18(16), pages 1-24, August.
    3. Muñoz-Rojas, J. & Pinto-Correia, T. & Napoleone, C., 2019. "Farm and land system dynamics in the Mediterranean: Integrating different spatial-temporal scales and management approaches," Land Use Policy, Elsevier, vol. 88(C).
    4. P. Harrison & R. Dunford & C. Savin & M. Rounsevell & I. Holman & A. Kebede & B. Stuch, 2015. "Cross-sectoral impacts of climate change and socio-economic change for multiple, European land- and water-based sectors," Climatic Change, Springer, vol. 128(3), pages 279-292, February.
    5. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    6. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Jennifer Adam & Jennie Stephens & Serena Chung & Michael Brady & R. Evans & Chad Kruger & Brian Lamb & Mingliang Liu & Claudio Stöckle & Joseph Vaughan & Kirti Rajagopalan & John Harrison & Christina , 2015. "BioEarth: Envisioning and developing a new regional earth system model to inform natural and agricultural resource management," Climatic Change, Springer, vol. 129(3), pages 555-571, April.
    8. Grundy, Michael J. & Bryan, Brett A. & Nolan, Martin & Battaglia, Michael & Hatfield-Dodds, Steve & Connor, Jeffery D. & Keating, Brian A., 2016. "Scenarios for Australian agricultural production and land use to 2050," Agricultural Systems, Elsevier, vol. 142(C), pages 70-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melnikov, Nikolai B. & O’Neill, Brian C. & Dalton, Michael G. & van Ruijven, Bas J., 2017. "Downscaling heterogeneous household outcomes in dynamic CGE models for energy-economic analysis," Energy Economics, Elsevier, vol. 65(C), pages 87-97.
    2. Zhang, Xi & Geng, Yong & Shao, Shuai & Wilson, Jeffrey & Song, Xiaoqian & You, Wei, 2020. "China’s non-fossil energy development and its 2030 CO2 reduction targets: The role of urbanization," Applied Energy, Elsevier, vol. 261(C).
    3. Lei, Mingyu & Cai, Wenjia & Liu, Wenling & Wang, Can, 2022. "The heterogeneity in energy consumption patterns and home appliance purchasing preferences across urban households in China," Energy, Elsevier, vol. 253(C).
    4. Setareh Katircioglu, 2022. "Estimating the role of urban development in environment quality: Evidence from G7 countries," Energy & Environment, , vol. 33(2), pages 283-314, March.
    5. Karanfil, Fatih & Li, Yuanjing, 2015. "Electricity consumption and economic growth: Exploring panel-specific differences," Energy Policy, Elsevier, vol. 82(C), pages 264-277.
    6. Yu, Yantuan & Zhang, Ning & Kim, Jong Dae, 2020. "Impact of urbanization on energy demand: An empirical study of the Yangtze River Economic Belt in China," Energy Policy, Elsevier, vol. 139(C).
    7. Wang, Bing & Ke, Ruo-Yu & Yuan, Xiao-Chen & Wei, Yi-Ming, 2014. "China׳s regional assessment of renewable energy vulnerability to climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 185-195.
    8. Floater, Graham & Rode, Philipp & Robert, Alexis & Kennedy, Chris & Hoornweg, Dan & Slavcheva, Roxana & Godfrey, Nick, 2014. "Cities and the New Climate Economy: the transformative role of global urban growth," LSE Research Online Documents on Economics 60775, London School of Economics and Political Science, LSE Library.
    9. Mun Ho & Wolfgang Britz & Ruth Delzeit & Florian Leblanc & Roberto Roson & Franziska Schuenemann & Matthias Weitzel, 2020. "Modelling Consumption and Constructing Long-Term Baselines in Final Demand," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 63-108, June.
    10. Luo, Xiaohu & Caron, Justin & Karplus, Valerie J. & Zhang, Da & Zhang, Xiliang, 2016. "Interprovincial migration and the stringency of energy policy in China," Energy Economics, Elsevier, vol. 58(C), pages 164-173.
    11. Yan-Qing Kang & Tao Zhao & Peng Wu, 2016. "Impacts of energy-related CO 2 emissions in China: a spatial panel data technique," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 405-421, March.
    12. Peichl, Andreas, 2008. "The benefits of linking CGE and Microsimulation Models - Evidence from a Flat Tax analysis," FiFo Discussion Papers - Finanzwissenschaftliche Diskussionsbeiträge 08-6, University of Cologne, FiFo Institute for Public Economics.
    13. Rausch, Sebastian & Metcalf, Gilbert E. & Reilly, John M., 2011. "Distributional impacts of carbon pricing: A general equilibrium approach with micro-data for households," Energy Economics, Elsevier, vol. 33(S1), pages 20-33.
    14. Linus Lawrenz & Bobby Xiong & Luise Lorenz & Alexandra Krumm & Hans Hosenfeld & Thorsten Burandt & Konstantin Löffler & Pao-Yu Oei & Christian Von Hirschhausen, 2018. "Exploring Energy Pathways for the Low-Carbon Transformation in India—A Model-Based Analysis," Energies, MDPI, vol. 11(11), pages 1-23, November.
    15. Magnani, Riccardo & Mercenier, Jean, 2009. "On linking microsimulation and computable general equilibrium models using exact aggregation of heterogeneous discrete-choice making agents," Economic Modelling, Elsevier, vol. 26(3), pages 560-570, May.
    16. Lanz, Bruno & Rausch, Sebastian, 2012. "Cap-and-Trade Climate Policies with Price-Regulated Firms: How Costly Are Free Allowances?," Conference papers 332267, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Yongxia Ding & Wei Qu & Shuwen Niu & Man Liang & Wenli Qiang & Zhenguo Hong, 2016. "Factors Influencing the Spatial Difference in Household Energy Consumption in China," Sustainability, MDPI, vol. 8(12), pages 1-20, December.
    18. Elliott, Robert J.R. & Sun, Puyang & Zhu, Tong, 2017. "The direct and indirect effect of urbanization on energy intensity: A province-level study for China," Energy, Elsevier, vol. 123(C), pages 677-692.
    19. Shahbaz, Muhammad & Loganathan, Nanthakumar & Sbia, Rashid & Afza, Talat, 2015. "The effect of urbanization, affluence and trade openness on energy consumption: A time series analysis in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 683-693.
    20. Ciarli, Tommaso & Savona, Maria, 2019. "Modelling the Evolution of Economic Structure and Climate Change: A Review," Ecological Economics, Elsevier, vol. 158(C), pages 51-64.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:118:y:2013:i:3:p:565-577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.