IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v117y2013i3p585-597.html
   My bibliography  Save this article

Integrating tipping points into climate impact assessments

Author

Listed:
  • Timothy Lenton
  • Juan-Carlos Ciscar

Abstract

There is currently a huge gulf between natural scientists’ understanding of climate tipping points and economists’ representations of climate catastrophes in integrated assessment models (IAMs). In particular, there are multiple potential tipping points and they are not all low-probability events; at least one has a significant probability of being passed this century under mid-range (2–4 °C) global warming, and they cannot all be ruled out at low (>2 °C) warming. In contrast, the dominant framing of climate catastrophes in IAMs, and in critiques of them, is that they are associated with high (> 4 °C) or very high (> 8 °C) global warming. This discrepancy could qualitatively alter the predictions of IAMs, including estimates of the social cost of carbon. To address this discrepancy and assess the economic impact of crossing different climate tipping points, we highlight a list of scientific points that should be considered, at least in a stylised form, in simplified IAMs. For nine different tipping events, the range of expected physical climate impacts is summarised and some suggestions are made for how they may translate into socio-economic impacts on particular sectors or regions. We also consider how passing climate tipping points could affect economic growth. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Timothy Lenton & Juan-Carlos Ciscar, 2013. "Integrating tipping points into climate impact assessments," Climatic Change, Springer, vol. 117(3), pages 585-597, April.
  • Handle: RePEc:spr:climat:v:117:y:2013:i:3:p:585-597
    DOI: 10.1007/s10584-012-0572-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0572-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0572-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Michael Link & Richard S. J. Tol, 2004. "Possible economic impacts of a shutdown of the thermohaline circulation: an application of FUND," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 3(2), pages 99-114, September.
    2. Fankhauser, Samuel & S.J. Tol, Richard, 2005. "On climate change and economic growth," Resource and Energy Economics, Elsevier, vol. 27(1), pages 1-17, January.
    3. Simon Dietz, 2011. "High impact, low probability? An empirical analysis of risk in the economics of climate change," Climatic Change, Springer, vol. 108(3), pages 519-541, October.
    4. Anders Levermann & Jonathan Bamber & Sybren Drijfhout & Andrey Ganopolski & Winfried Haeberli & Neil Harris & Matthias Huss & Kirstin Krüger & Timothy Lenton & Ronald Lindsay & Dirk Notz & Peter Wadha, 2012. "Potential climatic transitions with profound impact on Europe," Climatic Change, Springer, vol. 110(3), pages 845-878, February.
    5. Martin L. Weitzman, 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 1-19, February.
    6. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    7. Hanemann, W. Michael, 2008. "What is the economic cost of climate change?," CUDARE Working Papers 46999, University of California, Berkeley, Department of Agricultural and Resource Economics.
    8. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    9. P. Link & Richard Tol, 2011. "Estimation of the economic impact of temperature changes induced by a shutdown of the thermohaline circulation: an application of FUND," Climatic Change, Springer, vol. 104(2), pages 287-304, January.
    10. Dietz, Simon, 2011. "High impact, low probability?: an empirical analysis of risk in the economics of climate change," LSE Research Online Documents on Economics 38586, London School of Economics and Political Science, LSE Library.
    11. David Pollard & Robert M. DeConto, 2009. "Modelling West Antarctic ice sheet growth and collapse through the past five million years," Nature, Nature, vol. 458(7236), pages 329-332, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elizabeth Kopits & Alex L. Marten & Ann Wolverton, 2013. "Moving Forward with Incorporating "Catastrophic" Climate Change into Policy Analysis," NCEE Working Paper Series 201301, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Jan 2013.
    2. Simon Dietz, 2011. "The treatment of risk and uncertainty in the US Social Cost of Carbon for Regulatory Impact Analysis," GRI Working Papers 54, Grantham Research Institute on Climate Change and the Environment.
    3. Dietz, Simon, 2011. "The treatment of risk and uncertainty in the US social cost of carbon for regulatory impact analysis," Economics Discussion Papers 2011-30, Kiel Institute for the World Economy (IfW Kiel).
    4. Dietz, Simon, 2012. "The treatment of risk and uncertainty in the US social cost of carbon for regulatory impact analysis," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-12.
    5. Pezzey, John C.V. & Burke, Paul J., 2014. "Towards a more inclusive and precautionary indicator of global sustainability," Ecological Economics, Elsevier, vol. 106(C), pages 141-154.
    6. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020. "Expected utility and catastrophic risk in a stochastic economy–climate model," Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
    7. Megan Ceronsky & David Anthoff & Cameron Hepburn & Richard S.J. Tol, 2005. "Checking The Price Tag On Catastrophe: The Social Cost Of Carbon Under Non-Linear Climate Response," Working Papers FNU-87, Research unit Sustainability and Global Change, Hamburg University, revised Aug 2005.
    8. Kopp, Robert E. & Mignone, Bryan K., 2012. "The US government's social cost of carbon estimates after their first two years: Pathways for improvement," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-41.
    9. Barry Anderson & Emanuele Borgonovo & Marzio Galeotti & Roberto Roson, 2014. "Uncertainty in Climate Change Modeling: Can Global Sensitivity Analysis Be of Help?," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 271-293, February.
    10. De Bruin, Kelly & Kiran Krishnamurthy, Chandra, 2021. "Optimal Climate Policy with Fat-tailed Uncertainty: What the Models Can Tell Us," Papers WP697, Economic and Social Research Institute (ESRI).
    11. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    12. Simon Dietz & Anca N. Matei, 2013. "Is there space for agreement on climate change? A non-parametric approach to policy evaluation," GRI Working Papers 136, Grantham Research Institute on Climate Change and the Environment.
    13. Francesco Bosello & Carlo Carraro & Enrica De Cian, 2010. "Climate Policy And The Optimal Balance Between Mitigation, Adaptation And Unavoided Damage," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 1(02), pages 71-92.
    14. Millner, Antony, 2013. "On welfare frameworks and catastrophic climate risks," Journal of Environmental Economics and Management, Elsevier, vol. 65(2), pages 310-325.
    15. Jasper N. Meya & Ulrike Kornek & Kai Lessmann, 2018. "How empirical uncertainties influence the stability of climate coalitions," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(2), pages 175-198, April.
    16. Seth D. Baum & Timothy M. Maher & Jacob Haqq-Misra, 2013. "Double catastrophe: intermittent stratospheric geoengineering induced by societal collapse," Environment Systems and Decisions, Springer, vol. 33(1), pages 168-180, March.
    17. Luca Gerotto & Paolo Pellizzari, 2021. "A replication of Pindyck’s willingness to pay: on the efforts required to obtain results," SN Business & Economics, Springer, vol. 1(5), pages 1-25, May.
    18. Pindyck, Robert S., 2012. "Uncertain outcomes and climate change policy," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 289-303.
    19. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    20. Mitter, Hermine & Heumesser, Christine & Schmid, Erwin, 2014. "Modelling robust crop production portfolios to assess agricultural vulnerability to climate change," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182702, European Association of Agricultural Economists.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:117:y:2013:i:3:p:585-597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.