IDEAS home Printed from https://ideas.repec.org/a/spr/bioerq/v2y2017i3d10.1007_s41247-017-0026-z.html
   My bibliography  Save this article

Resource Criticality in Modern Economies: Agent-Based Model Demonstrates Vulnerabilities from Technological Interdependence

Author

Listed:
  • John Sherwood

    (Clemson University)

  • Anthony Ditta

    (University of Chicago Booth School of Business)

  • Becky Haney

    (Calvin College)

  • Loren Haarsma

    (Calvin College)

  • Michael Carbajales-Dale

    (Clemson University)

Abstract

Industrialized society will transition away from dependence on non-renewable resources (fossil fuels, in particular) sometime in the foreseeable future. How disruptive this transition will be to the economy and societal well-being is unknown, particularly if there are any sudden resource supply constraints. However, the effects of resource supply constraints on an economy, or models of the interdependent relationship between the economy and natural capital overall have not been thoroughly developed. One problem is that traditional models of the economy assume linear growth, while highly interdependent industrialized economies may behave more like a complex adaptive system with non-linear, path-dependent, and unexpected growth trajectories. Agent-based models have been shown to successfully model important aspects of a complex adaptive economy. This paper uses an agent-based model to demonstrate potential economic impacts for industrialized economies in the face of a sudden resource supply constraint. Economic “agents” mine resources and invent technology. Through trade and specialization, the economy evolves from a collection of self-sustaining, resource-poor agents to a society with a high degree of interdependence and wealth. Economic growth, however, comes with a cost; the interdependence that arises from specialization and trade also leads to a less resilient economy. Unexpected, large economic collapse can arise from a shock to even a single resource, due to each resource’s interdependent role in the economy.

Suggested Citation

  • John Sherwood & Anthony Ditta & Becky Haney & Loren Haarsma & Michael Carbajales-Dale, 2017. "Resource Criticality in Modern Economies: Agent-Based Model Demonstrates Vulnerabilities from Technological Interdependence," Biophysical Economics and Resource Quality, Springer, vol. 2(3), pages 1-22, September.
  • Handle: RePEc:spr:bioerq:v:2:y:2017:i:3:d:10.1007_s41247-017-0026-z
    DOI: 10.1007/s41247-017-0026-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41247-017-0026-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s41247-017-0026-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    2. Sjak Smulders & Michael Toman & Cees Withagen, 2014. "Growth theory and ‘green growth’," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 30(3), pages 423-446.
    3. Pan, Haoran & Kohler, Jonathan, 2007. "Technological change in energy systems: Learning curves, logistic curves and input-output coefficients," Ecological Economics, Elsevier, vol. 63(4), pages 749-758, September.
    4. William Brock & M. Taylor, 2010. "The Green Solow model," Journal of Economic Growth, Springer, vol. 15(2), pages 127-153, June.
    5. John Hartwick, 1977. "Intergenerational Equity and the Investment of Rents from Exhaustible Resources in a Two Sector Model," Working Paper 281, Economics Department, Queen's University.
    6. Ayres, Robert U. & Warr, Benjamin, 2005. "Accounting for growth: the role of physical work," Structural Change and Economic Dynamics, Elsevier, vol. 16(2), pages 181-209, June.
    7. Tesfatsion, Leigh & Judd, Kenneth L., 2006. "Handbook of Computational Economics, Vol. 2: Agent-Based Computational Economics," Staff General Research Papers Archive 10368, Iowa State University, Department of Economics.
    8. Brock, William A. & Taylor, M. Scott, 2005. "Economic Growth and the Environment: A Review of Theory and Empirics," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 28, pages 1749-1821, Elsevier.
    9. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    10. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39, pages 137-137.
    11. Flaminio Squazzoni, 2010. "The impact of agent-based models in the social sciences after 15 years of incursions," History of Economic Ideas, Fabrizio Serra Editore, Pisa - Roma, vol. 18(2), pages 197-234.
    12. Stijn Claessens, 2010. "The Financial Crisis," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 4(2), pages 177-196, May.
    13. Holland, John H & Miller, John H, 1991. "Artificial Adaptive Agents in Economic Theory," American Economic Review, American Economic Association, vol. 81(2), pages 365-371, May.
    14. Hartwick, John M, 1977. "Intergenerational Equity and the Investing of Rents from Exhaustible Resources," American Economic Review, American Economic Association, vol. 67(5), pages 972-974, December.
    15. David Simpson, 2013. "The Rediscovery of Classical Economics," Books, Edward Elgar Publishing, number 15080.
    16. Steven N. Durlauf, 2012. "Complexity, economics, and public policy," Politics, Philosophy & Economics, , vol. 11(1), pages 45-75, February.
    17. repec:hal:spmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    18. Stijn Claessens & Giovanni Dell’Ariccia & Deniz Igan & Luc Laeven, 2010. "Cross-country experiences and policy implications from the global financial crisis [From Great Depression to Great Credit Crisis: Similarities, differences and lessons]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 25(62), pages 267-293.
    19. Joshua M. Epstein & Robert L. Axtell, 1996. "Growing Artificial Societies: Social Science from the Bottom Up," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262550253, December.
    20. David Colander & Roland Kupers, 2014. "Complexity and the Art of Public Policy: Solving Society’s Problems from the Bottom Up," Economics Books, Princeton University Press, edition 1, number 10207.
    21. John M. Hartwick, 1978. "Substitution Among Exhaustible Resources and Intergenerational Equity," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 45(2), pages 347-354.
    22. Hoel, Michael & Kverndokk, Snorre, 1996. "Depletion of fossil fuels and the impacts of global warming," Resource and Energy Economics, Elsevier, vol. 18(2), pages 115-136, June.
    23. Robert M. Solow, 2007. "The last 50 years in growth theory and the next 10," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 23(1), pages 3-14, Spring.
    24. Nordhaus, William D, 1993. "Optimal Greenhouse-Gas Reductions and Tax Policy in the "Dice" Model," American Economic Review, American Economic Association, vol. 83(2), pages 313-317, May.
    25. Friedrichs, Jörg, 2010. "Global energy crunch: How different parts of the world would react to a peak oil scenario," Energy Policy, Elsevier, vol. 38(8), pages 4562-4569, August.
    26. Nicolaas J. Vriend, 2002. "Was Hayek an Ace?," Southern Economic Journal, John Wiley & Sons, vol. 68(4), pages 811-840, April.
    27. Ayres, Robert U. & van den Bergh, Jeroen C.J.M. & Lindenberger, Dietmar & Warr, Benjamin, 2013. "The underestimated contribution of energy to economic growth," Structural Change and Economic Dynamics, Elsevier, vol. 27(C), pages 79-88.
    28. Lee, Ju-Sung & Filatova, Tatiana & Ligmann-Zielinska, Arika & Hassani-Mahmooei, Behrooz & Stonedahl, Forrest & Lorscheid, Iris & Voinov, Alexey & Polhill, J. Gareth & Sun, Zhanli & Parker, Dawn C., 2015. "The complexities of agent-based modeling output analysis," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 18(4).
    29. Stern, David I., 1997. "Limits to substitution and irreversibility in production and consumption: A neoclassical interpretation of ecological economics," Ecological Economics, Elsevier, vol. 21(3), pages 197-215, June.
    30. Norgaard, Richard B., 1990. "Economic indicators of resource scarcity: A critical essay," Journal of Environmental Economics and Management, Elsevier, vol. 19(1), pages 19-25, July.
    31. Arbex, Marcelo & Perobelli, Fernando S., 2010. "Solow meets Leontief: Economic growth and energy consumption," Energy Economics, Elsevier, vol. 32(1), pages 43-53, January.
    32. Matthew K. Heun & João Santos & Paul E. Brockway & Randall Pruim & Tiago Domingos & Marco Sakai, 2017. "From Theory to Econometrics to Energy Policy: Cautionary Tales for Policymaking Using Aggregate Production Functions," Energies, MDPI, vol. 10(2), pages 1-44, February.
    33. Alan Kirman, 2016. "Complexity and Economic Policy: A Paradigm Shift or a Change in Perspective? A Review Essay on David Colander and Roland Kupers's Complexity and the Art of Public Policy," Journal of Economic Literature, American Economic Association, vol. 54(2), pages 534-572, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John Sherwood & Michael Carbajales-Dale & Becky Roselius Haney, 2020. "Putting the Biophysical (Back) in Economics: A Taxonomic Review of Modeling the Earth-Bound Economy," Biophysical Economics and Resource Quality, Springer, vol. 5(1), pages 1-20, March.
    2. Fenintsoa Andriamasinoro & Raphael Danino-Perraud, 2021. "Use of artificial intelligence to assess mineral substance criticality in the French market: the example of cobalt," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(1), pages 19-37, April.
    3. Hanna, Richard & Gross, Robert, 2021. "How do energy systems model and scenario studies explicitly represent socio-economic, political and technological disruption and discontinuity? Implications for policy and practitioners," Energy Policy, Elsevier, vol. 149(C).
    4. Gao, Guibing & Wang, Junshen & Yue, Wenhui & Ou, Wenchu, 2020. "Structural-vulnerability assessment of reconfigurable manufacturing system based on universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    5. Guibing, Gao & Wenhui, Yue & Wenchu, Ou & Hao, Tang, 2018. "Vulnerability evaluation method applied to manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 255-265.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verchère, Alban, 2011. "Le développement durable en question : analyses économiques autour d’un improbable compromis entre acceptions optimiste et pessimiste du rapport de l’Homme à la Nature," L'Actualité Economique, Société Canadienne de Science Economique, vol. 87(3), pages 337-403, septembre.
    2. Santiago J. Gangotena, 2017. "Dynamic coordinating non-equilibrium," The Review of Austrian Economics, Springer;Society for the Development of Austrian Economics, vol. 30(1), pages 51-82, March.
    3. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.
    4. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    5. Toman, Michael & Pezzey, John C., 2002. "The Economics of Sustainability: A Review of Journal Articles," RFF Working Paper Series dp-02-03, Resources for the Future.
    6. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    7. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    8. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    9. Smith, James L., 2012. "On the portents of peak oil (and other indicators of resource scarcity)," Energy Policy, Elsevier, vol. 44(C), pages 68-78.
    10. Furtado, Bernardo Alves & Eberhardt, Isaque Daniel Rocha, 2015. "Modelo espacial simples da economia: uma proposta teórico-metodológica [A simple spatial economic model: a proposal]," MPRA Paper 67005, University Library of Munich, Germany.
    11. Marc Deissenroth & Martin Klein & Kristina Nienhaus & Matthias Reeg, 2017. "Assessing the Plurality of Actors and Policy Interactions: Agent-Based Modelling of Renewable Energy Market Integration," Complexity, Hindawi, vol. 2017, pages 1-24, December.
    12. Daniele Schilirò, 2019. "Sustainability, Innovation, and Efficiency: A Key Relationship," Palgrave Studies in Impact Finance, in: Magdalena Ziolo & Bruno S. Sergi (ed.), Financing Sustainable Development, chapter 0, pages 83-102, Palgrave Macmillan.
    13. Macías, Arturo & Matilla-García, Mariano, 2015. "Net energy analysis in a Ramsey–Hotelling growth model," Energy Policy, Elsevier, vol. 86(C), pages 562-573.
    14. Perrings, Charles, 2014. "Environment and development economics 20 years on," Environment and Development Economics, Cambridge University Press, vol. 19(3), pages 333-366, June.
    15. David I. Stern, 2010. "The Role of Energy in Economic Growth," CCEP Working Papers 0310, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    16. Bernardo A. Furtado & Miguel A. Fuentes & Claudio J. Tessone, 2019. "Policy Modeling and Applications: State-of-the-Art and Perspectives," Complexity, Hindawi, vol. 2019, pages 1-11, February.
    17. Luca Grilli & Domenico Santoro, 2022. "Forecasting financial time series with Boltzmann entropy through neural networks," Computational Management Science, Springer, vol. 19(4), pages 665-681, October.
    18. repec:hal:spmain:info:hdl:2441/5vt1fet9fq9o5pkgj2qh2vn1cm is not listed on IDEAS
    19. Chen, Shu-Heng, 2012. "Varieties of agents in agent-based computational economics: A historical and an interdisciplinary perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 1-25.
    20. Martinet, Vincent, 2007. "A step beside the maximin path: Can we sustain the economy by following Hartwick's investment rule?," Ecological Economics, Elsevier, vol. 64(1), pages 103-108, October.
    21. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2020. "Climate change and green transitions in an agent-based integrated assessment model," Technological Forecasting and Social Change, Elsevier, vol. 153(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:bioerq:v:2:y:2017:i:3:d:10.1007_s41247-017-0026-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.