IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v6y2019i3d10.1007_s40745-018-0179-7.html
   My bibliography  Save this article

Treatment Effect Decomposition and Bootstrap Hypothesis Testing in Observational Studies

Author

Listed:
  • Hee Youn Kwon

    (Northwestern University)

  • Jason J. Sauppe

    (University of Wisconsin–La Crosse)

  • Sheldon H. Jacobson

    (University of Illinois at Urbana-Champaign)

Abstract

Causal inference with observational data has drawn attention across various fields. These observational studies typically use matching methods which find matched pairs with similar covariate values. However, matching methods may not directly achieve covariate balance, a measure of matching effectiveness. As an alternative, the Balance Optimization Subset Selection (BOSS) framework, which seeks optimal covariate balance directly, has been proposed. This paper extends BOSS by estimating and decomposing a treatment effect as a combination of heterogeneous treatment effects from a partitioned set. Our method differs from the traditional propensity score subclassification method in that we find a subset in each subclass using BOSS instead of using the stratum determined by the propensity score. Then, by conducting a bootstrap hypothesis test on each component, we check the statistical significance of these treatment effects. These methods are applied to a dataset from the National Supported Work Demonstration (NSW) program which was conducted in the 1970s. By examining the statistical significance, we show that the program was not significantly effective to a specific subgroup composed of those who were already employed. This differs from the combined estimate—the NSW program was effective when considering all the individuals. Lastly, we provide results that are obtained when these steps are repeated with sub-samples.

Suggested Citation

  • Hee Youn Kwon & Jason J. Sauppe & Sheldon H. Jacobson, 2019. "Treatment Effect Decomposition and Bootstrap Hypothesis Testing in Observational Studies," Annals of Data Science, Springer, vol. 6(3), pages 491-511, September.
  • Handle: RePEc:spr:aodasc:v:6:y:2019:i:3:d:10.1007_s40745-018-0179-7
    DOI: 10.1007/s40745-018-0179-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-018-0179-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-018-0179-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    2. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    3. Guildo W. Imbens, 2003. "Sensitivity to Exogeneity Assumptions in Program Evaluation," American Economic Review, American Economic Association, vol. 93(2), pages 126-132, May.
    4. Alexander G. Nikolaev & Sheldon H. Jacobson & Wendy K. Tam Cho & Jason J. Sauppe & Edward C. Sewell, 2013. "Balance Optimization Subset Selection (BOSS): An Alternative Approach for Causal Inference with Observational Data," Operations Research, INFORMS, vol. 61(2), pages 398-412, April.
    5. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
    6. Jason J. Sauppe & Sheldon H. Jacobson, 2017. "The role of covariate balance in observational studies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 323-344, June.
    7. Abadie, Alberto & Imbens, Guido W., 2011. "Bias-Corrected Matching Estimators for Average Treatment Effects," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 1-11.
    8. Heckman, J.J. & Hotz, V.J., 1988. "Choosing Among Alternative Nonexperimental Methods For Estimating The Impact Of Social Programs: The Case Of Manpower Training," University of Chicago - Economics Research Center 88-12, Chicago - Economics Research Center.
    9. Wendy K. Tam Cho & Jason J. Sauppe & Alexander G. Nikolaev & Sheldon H. Jacobson & Edward C. Sewell, 2013. "An optimization approach for making causal inferences," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(2), pages 211-226, May.
    10. Jason J. Sauppe & Sheldon H. Jacobson & Edward C. Sewell, 2014. "Complexity and Approximation Results for the Balance Optimization Subset Selection Model for Causal Inference in Observational Studies," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 547-566, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tymon Słoczyński, 2015. "The Oaxaca–Blinder Unexplained Component as a Treatment Effects Estimator," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(4), pages 588-604, August.
    2. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    3. Steven Lehrer & Gregory Kordas, 2013. "Matching using semiparametric propensity scores," Empirical Economics, Springer, vol. 44(1), pages 13-45, February.
    4. Jason J. Sauppe & Sheldon H. Jacobson, 2017. "The role of covariate balance in observational studies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 323-344, June.
    5. Dettmann, E. & Becker, C. & Schmeißer, C., 2011. "Distance functions for matching in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1942-1960, May.
    6. Tommaso Nannicini, 2007. "Simulation-based sensitivity analysis for matching estimators," Stata Journal, StataCorp LP, vol. 7(3), pages 334-350, September.
    7. Dettmann, Eva & Becker, Claudia & Schmeißer, Christian, 2010. "Is there a Superior Distance Function for Matching in Small Samples?," IWH Discussion Papers 3/2010, Halle Institute for Economic Research (IWH).
    8. Flores, Carlos A. & Mitnik, Oscar A., 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," IZA Discussion Papers 4451, Institute of Labor Economics (IZA).
    9. Caliendo, Marco & Mahlstedt, Robert & Mitnik, Oscar A., 2017. "Unobservable, but unimportant? The relevance of usually unobserved variables for the evaluation of labor market policies," Labour Economics, Elsevier, vol. 46(C), pages 14-25.
    10. Firpo, Sergio & Galvao, Antonio F. & Parker, Thomas, 2023. "Uniform inference for value functions," Journal of Econometrics, Elsevier, vol. 235(2), pages 1680-1699.
    11. Peter R. Mueser & Kenneth R. Troske & Alexey Gorislavsky, 2007. "Using State Administrative Data to Measure Program Performance," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 761-783, November.
    12. Donald, Stephen G. & Hsu, Yu-Chin, 2014. "Estimation and inference for distribution functions and quantile functions in treatment effect models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 383-397.
    13. James J. Heckman & Petra E. Todd, 2009. "A note on adapting propensity score matching and selection models to choice based samples," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 230-234, January.
    14. Gustavo Canavire-Bacarreza & Luis Castro Peñarrieta & Darwin Ugarte Ontiveros, 2021. "Outliers in Semi-Parametric Estimation of Treatment Effects," Econometrics, MDPI, vol. 9(2), pages 1-32, April.
    15. Advani, Arun & Sloczynski, Tymon, 2013. "Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies," IZA Discussion Papers 7874, Institute of Labor Economics (IZA).
    16. Cansino, José M. & Lopez-Melendo, Jaime & Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2013. "An economic evaluation of public programs for internationalization: The case of the Diagnostic program in Spain," Evaluation and Program Planning, Elsevier, vol. 41(C), pages 38-46.
    17. Lechner, Michael & Wunsch, Conny, 2013. "Sensitivity of matching-based program evaluations to the availability of control variables," Labour Economics, Elsevier, vol. 21(C), pages 111-121.
    18. Helena Holmlund & Olmo Silva, 2014. "Targeting Noncognitive Skills to Improve Cognitive Outcomes: Evidence from a Remedial Education Intervention," Journal of Human Capital, University of Chicago Press, vol. 8(2), pages 126-160.
    19. Rothstein, Jesse & Von Wachter, Till, 2016. "Social Experiments in the Labor Market," Department of Economics, Working Paper Series qt7957p9g6, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    20. Ferman, Bruno, 2021. "Matching estimators with few treated and many control observations," Journal of Econometrics, Elsevier, vol. 225(2), pages 295-307.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:6:y:2019:i:3:d:10.1007_s40745-018-0179-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.