IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v286y2020i1d10.1007_s10479-017-2711-0.html
   My bibliography  Save this article

Mixed-model assembly lines balancing with given buffers and product sequence: model, formulation comparisons, and case study

Author

Listed:
  • Thiago Cantos Lopes

    (Federal University of Technology - Paraná (UTFPR))

  • Celso Gustavo Stall Sikora

    (Federal University of Technology - Paraná (UTFPR))

  • Adalberto Sato Michels

    (Federal University of Technology - Paraná (UTFPR))

  • Leandro Magatão

    (Federal University of Technology - Paraná (UTFPR))

Abstract

Asynchronous assembly lines are productive layouts in which products move sequentially between stations when processing at current station is complete, and the following station is empty. When these conditions are not verified, downstream starvations and upstream blockages can occur. Buffers are often employed to minimize these problems, which are particularly relevant when the line is shared between a set of different products models (mixed-model lines). If the sequence of such models is cyclical, a steady-state production rate is eventually reached. However, determining (and, therefore, optimizing) such steady-state is challenging. This led to the development of indirect performance measures for mixed-model lines by many authors. In this paper, a direct performance measure is presented with a mixed-integer linear programming model and compared to previous formulations. The model is also applied to a practical case study and to a new dataset (with 1050 instances), allowing general assertions on the problem. All instances are solved with a universal solver and solutions are validated with a simulation software. Tests on the dataset instances confirmed the observations made on the case study: the proposed formulation produced solutions with higher production rate in 82% of the instances and tied the remaining ones, not being outperformed a single time. A triple interdependency of task balancing, product sequencing, and buffer allocation is demonstrated. Cyclical schedules show how buffers are able to compensate differences between models across stations and lead to the conclusion that the propagation of differences of models between stations can generate scheduling bottlenecks (blockages and starvation).

Suggested Citation

  • Thiago Cantos Lopes & Celso Gustavo Stall Sikora & Adalberto Sato Michels & Leandro Magatão, 2020. "Mixed-model assembly lines balancing with given buffers and product sequence: model, formulation comparisons, and case study," Annals of Operations Research, Springer, vol. 286(1), pages 475-500, March.
  • Handle: RePEc:spr:annopr:v:286:y:2020:i:1:d:10.1007_s10479-017-2711-0
    DOI: 10.1007/s10479-017-2711-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2711-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2711-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Uli Golle & Franz Rothlauf & Nils Boysen, 2015. "Iterative beam search for car sequencing," Annals of Operations Research, Springer, vol. 226(1), pages 239-254, March.
    2. Armin Scholl & Nils Boysen & Malte Fliedner, 2009. "Optimally solving the alternative subgraphs assembly line balancing problem," Annals of Operations Research, Springer, vol. 172(1), pages 243-258, November.
    3. Ernest Koenigsberg, 1959. "Production Lines and Internal Storage--A Review," Management Science, INFORMS, vol. 5(4), pages 410-433, July.
    4. David Alexander & I. Premachandra & Toshikazu Kimura, 2010. "Transient and asymptotic behavior of synchronization processes in assembly-like queues," Annals of Operations Research, Springer, vol. 181(1), pages 641-659, December.
    5. Tiacci, Lorenzo, 2015. "Simultaneous balancing and buffer allocation decisions for the design of mixed-model assembly lines with parallel workstations and stochastic task times," International Journal of Production Economics, Elsevier, vol. 162(C), pages 201-215.
    6. Sawik, Tadeusz, 2004. "Loading and scheduling of a flexible assembly system by mixed integer programming," European Journal of Operational Research, Elsevier, vol. 154(1), pages 1-19, April.
    7. Nick T. Thomopoulos, 1970. "Mixed Model Line Balancing with Smoothed Station Assignments," Management Science, INFORMS, vol. 16(9), pages 593-603, May.
    8. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    9. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    10. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    11. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2008. "Assembly line balancing: Which model to use when," International Journal of Production Economics, Elsevier, vol. 111(2), pages 509-528, February.
    12. Scholl, Armin, 1995. "Balancing and sequencing of assembly lines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 9690, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    13. Sikora, Celso Gustavo Stall & Lopes, Thiago Cantos & Magatão, Leandro, 2017. "Traveling worker assembly line (re)balancing problem: Model, reduction techniques, and real case studies," European Journal of Operational Research, Elsevier, vol. 259(3), pages 949-971.
    14. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    15. Cigdem Gurgur, 2013. "Optimal configuration of a decentralized, market-driven production/inventory system," Annals of Operations Research, Springer, vol. 209(1), pages 139-157, October.
    16. Otto, Alena & Otto, Christian & Scholl, Armin, 2013. "Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 228(1), pages 33-45.
    17. Diomidis Spinellis & Chrissoleon Papadopoulos, 2000. "A simulated annealing approach for buffer allocation in reliable production lines," Annals of Operations Research, Springer, vol. 93(1), pages 373-384, January.
    18. Evgeny Gurevsky & Olga Battaïa & Alexandre Dolgui, 2012. "Balancing of simple assembly lines under variations of task processing times," Annals of Operations Research, Springer, vol. 201(1), pages 265-286, December.
    19. Yow-yuh Leu & Philip Huang & Roberta Russell, 1997. "Using beam search techniques for sequencing mixed-model assembly lines," Annals of Operations Research, Springer, vol. 70(0), pages 379-397, April.
    20. Susan Heath & Jonathan Bard & Douglas Morrice, 2013. "A GRASP for simultaneously assigning and sequencing product families on flexible assembly lines," Annals of Operations Research, Springer, vol. 203(1), pages 295-323, March.
    21. R Pastor & C Andrés & A Duran & M Pérez, 2002. "Tabu search algorithms for an industrial multi-product and multi-objective assembly line balancing problem, with reduction of the task dispersion," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(12), pages 1317-1323, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lopes, Thiago Cantos & Pastre, Giuliano Vidal & Michels, Adalberto Sato & Magatão, Leandro, 2020. "Flexible multi-manned assembly line balancing problem: Model, heuristic procedure, and lower bounds for line length minimization," Omega, Elsevier, vol. 95(C).
    2. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    3. Lopes, Thiago Cantos & Michels, Adalberto Sato & Sikora, Celso Gustavo Stall & Molina, Rafael Gobbi & Magatão, Leandro, 2018. "Balancing and cyclically sequencing synchronous, asynchronous, and hybrid unpaced assembly lines," International Journal of Production Economics, Elsevier, vol. 203(C), pages 216-224.
    4. Lopes, Thiago Cantos & Sikora, C.G.S. & Molina, Rafael Gobbi & Schibelbain, Daniel & Rodrigues, L.C.A. & Magatão, Leandro, 2017. "Balancing a robotic spot welding manufacturing line: An industrial case study," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1033-1048.
    5. Hashemi-Petroodi, S. Ehsan & Thevenin, Simon & Kovalev, Sergey & Dolgui, Alexandre, 2022. "Model-dependent task assignment in multi-manned mixed-model assembly lines with walking workers," Omega, Elsevier, vol. 113(C).
    6. Hashemi-Petroodi, S. Ehsan & Thevenin, Simon & Kovalev, Sergey & Dolgui, Alexandre, 2023. "Markov decision process for multi-manned mixed-model assembly lines with walking workers," International Journal of Production Economics, Elsevier, vol. 255(C).
    7. Sternatz, Johannes, 2015. "The joint line balancing and material supply problem," International Journal of Production Economics, Elsevier, vol. 159(C), pages 304-318.
    8. Minghai Yuan & Hongyan Yu & Jinting Huang & Aimin Ji, 2019. "Reconfigurable assembly line balancing for cloud manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2391-2405, August.
    9. Sternatz, Johannes, 2014. "Enhanced multi-Hoffmann heuristic for efficiently solving real-world assembly line balancing problems in automotive industry," European Journal of Operational Research, Elsevier, vol. 235(3), pages 740-754.
    10. Walter, Rico & Schulze, Philipp & Scholl, Armin, 2021. "SALSA: Combining branch-and-bound with dynamic programming to smoothen workloads in simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 295(3), pages 857-873.
    11. Borba, Leonardo & Ritt, Marcus & Miralles, Cristóbal, 2018. "Exact and heuristic methods for solving the Robotic Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 146-156.
    12. Scholl, Armin & Fliedner, Malte & Boysen, Nils, 2010. "Absalom: Balancing assembly lines with assignment restrictions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 688-701, February.
    13. Otto, Alena & Otto, Christian & Scholl, Armin, 2013. "Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 228(1), pages 33-45.
    14. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2008. "Assembly line balancing: Which model to use when," International Journal of Production Economics, Elsevier, vol. 111(2), pages 509-528, February.
    15. Otto, Alena & Li, Xiyu, 2020. "Product sequencing in multiple-piece-flow assembly lines," Omega, Elsevier, vol. 91(C).
    16. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2007. "A classification of assembly line balancing problems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 674-693, December.
    17. Christian Weckenborg & Karsten Kieckhäfer & Christoph Müller & Martin Grunewald & Thomas S. Spengler, 2020. "Balancing of assembly lines with collaborative robots," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 93-132, April.
    18. Koltai, Tamás & Dimény, Imre & Gallina, Viola & Gaal, Alexander & Sepe, Chiara, 2021. "An analysis of task assignment and cycle times when robots are added to human-operated assembly lines, using mathematical programming models," International Journal of Production Economics, Elsevier, vol. 242(C).
    19. García-Villoria, Alberto & Corominas, Albert & Nadal, Adrià & Pastor, Rafael, 2018. "Solving the accessibility windows assembly line problem level 1 and variant 1 (AWALBP-L1-1) with precedence constraints," European Journal of Operational Research, Elsevier, vol. 271(3), pages 882-895.
    20. Chica, Manuel & Bautista, Joaquín & Cordón, Óscar & Damas, Sergio, 2016. "A multiobjective model and evolutionary algorithms for robust time and space assembly line balancing under uncertain demand," Omega, Elsevier, vol. 58(C), pages 55-68.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:286:y:2020:i:1:d:10.1007_s10479-017-2711-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.