IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v172y2009i1p243-25810.1007-s10479-009-0578-4.html
   My bibliography  Save this article

Optimally solving the alternative subgraphs assembly line balancing problem

Author

Listed:
  • Armin Scholl
  • Nils Boysen
  • Malte Fliedner

Abstract

Assembly line balancing problems (ALBP) consist of distributing the total workload for manufacturing any unit of the products to be assembled among the work stations along a manufacturing line as used in the automotive or the electronics industries. Usually, it is assumed that the production process is fixed, i.e., has been determined in a preceding planning step. However, this sequential planning approach is often suboptimal because the efficiency of the production process can not be evaluated definitely without knowing the distribution of work. Instead, both decisions should be taken simultaneously. This has led to the Alternative Subgraphs ALBP. We give an alternative representation of the problem, formulate an improved mixed-integer program and propose a solution approach based on SALOME, an effective branch-and-bound procedure for the well-known Simple ALBP. Computational experiments indicate that the proposed procedure is successful in finding optimal solutions for small- and medium-sized problem instances and rather good heuristic solutions for large-scaled instances. Copyright Springer Science+Business Media, LLC 2009

Suggested Citation

  • Armin Scholl & Nils Boysen & Malte Fliedner, 2009. "Optimally solving the alternative subgraphs assembly line balancing problem," Annals of Operations Research, Springer, vol. 172(1), pages 243-258, November.
  • Handle: RePEc:spr:annopr:v:172:y:2009:i:1:p:243-258:10.1007/s10479-009-0578-4
    DOI: 10.1007/s10479-009-0578-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-009-0578-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-009-0578-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scholl, Armin & Klein, Robert, 1999. "Balancing assembly lines effectively - A computational comparison," European Journal of Operational Research, Elsevier, vol. 114(1), pages 50-58, April.
    2. Armin Scholl & Robert Klein, 1997. "SALOME: A Bidirectional Branch-and-Bound Procedure for Assembly Line Balancing," INFORMS Journal on Computing, INFORMS, vol. 9(4), pages 319-334, November.
    3. Saltzman, Matthew J. & Baybars, Ilker, 1987. "A two-process implicit enumeration algorithm for the simple assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 32(1), pages 118-129, October.
    4. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2007. "A classification of assembly line balancing problems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 674-693, December.
    5. Peter A. Pinto & David G. Dannenbring & Basheer M. Khumawala, 1983. "Assembly Line Balancing with Processing Alternatives: An Application," Management Science, INFORMS, vol. 29(7), pages 817-830, July.
    6. James H. Patterson & Joseph J. Albracht, 1975. "Technical Note—Assembly-Line Balancing: Zero-One Programming with Fibonacci Search," Operations Research, INFORMS, vol. 23(1), pages 166-172, February.
    7. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    8. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    9. Scholl, Armin, 1995. "Balancing and sequencing of assembly lines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 9690, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    10. E. H. Bowman, 1960. "Assembly-Line Balancing by Linear Programming," Operations Research, INFORMS, vol. 8(3), pages 385-389, June.
    11. Scholl, Armin & Klein, Robert, 1997. "SALOME. a bidirectional branch and bound procedure for assembly line balancing," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 7890, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    12. William W. White, 1961. "Letter to the Editor---Comments on a Paper by Bowman," Operations Research, INFORMS, vol. 9(2), pages 274-276, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan Oesterle & Lionel Amodeo & Farouk Yalaoui, 2019. "A comparative study of Multi-Objective Algorithms for the Assembly Line Balancing and Equipment Selection Problem under consideration of Product Design Alternatives," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1021-1046, March.
    2. Otto, Alena & Scholl, Armin, 2011. "Incorporating ergonomic risks into assembly line balancing," European Journal of Operational Research, Elsevier, vol. 212(2), pages 277-286, July.
    3. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    4. Servranckx, Tom & Vanhoucke, Mario, 2019. "A tabu search procedure for the resource-constrained project scheduling problem with alternative subgraphs," European Journal of Operational Research, Elsevier, vol. 273(3), pages 841-860.
    5. Lopes, Thiago Cantos & Sikora, C.G.S. & Molina, Rafael Gobbi & Schibelbain, Daniel & Rodrigues, L.C.A. & Magatão, Leandro, 2017. "Balancing a robotic spot welding manufacturing line: An industrial case study," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1033-1048.
    6. Talip Kellegöz, 2017. "Assembly line balancing problems with multi-manned stations: a new mathematical formulation and Gantt based heuristic method," Annals of Operations Research, Springer, vol. 253(1), pages 377-404, June.
    7. Minghai Yuan & Hongyan Yu & Jinting Huang & Aimin Ji, 2019. "Reconfigurable assembly line balancing for cloud manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2391-2405, August.
    8. Bentaha, Mohand Lounes & Battaïa, Olga & Dolgui, Alexandre & Hu, S. Jack, 2015. "Second order conic approximation for disassembly line design with joint probabilistic constraints," European Journal of Operational Research, Elsevier, vol. 247(3), pages 957-967.
    9. Otto, Alena & Otto, Christian & Scholl, Armin, 2013. "Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 228(1), pages 33-45.
    10. Thiago Cantos Lopes & Celso Gustavo Stall Sikora & Adalberto Sato Michels & Leandro Magatão, 2020. "Mixed-model assembly lines balancing with given buffers and product sequence: model, formulation comparisons, and case study," Annals of Operations Research, Springer, vol. 286(1), pages 475-500, March.
    11. Sinem Buyuksaatci Kiris & Enes Eryarsoy & Selim Zaim & Dursun Delen, 2023. "An integrated approach for lean production using simulation and data envelopment analysis," Annals of Operations Research, Springer, vol. 320(2), pages 863-886, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scholl, Armin & Fliedner, Malte & Boysen, Nils, 2010. "Absalom: Balancing assembly lines with assignment restrictions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 688-701, February.
    2. Bukchin, Yossi & Raviv, Tal, 2018. "Constraint programming for solving various assembly line balancing problems," Omega, Elsevier, vol. 78(C), pages 57-68.
    3. Scholl, Armin & Boysen, Nils, 2009. "Designing parallel assembly lines with split workplaces: Model and optimization procedure," International Journal of Production Economics, Elsevier, vol. 119(1), pages 90-100, May.
    4. Otto, Alena & Scholl, Armin, 2011. "Incorporating ergonomic risks into assembly line balancing," European Journal of Operational Research, Elsevier, vol. 212(2), pages 277-286, July.
    5. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    6. Lopes, Thiago Cantos & Sikora, C.G.S. & Molina, Rafael Gobbi & Schibelbain, Daniel & Rodrigues, L.C.A. & Magatão, Leandro, 2017. "Balancing a robotic spot welding manufacturing line: An industrial case study," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1033-1048.
    7. Becker, Christian & Scholl, Armin, 2009. "Balancing assembly lines with variable parallel workplaces: Problem definition and effective solution procedure," European Journal of Operational Research, Elsevier, vol. 199(2), pages 359-374, December.
    8. Sternatz, Johannes, 2014. "Enhanced multi-Hoffmann heuristic for efficiently solving real-world assembly line balancing problems in automotive industry," European Journal of Operational Research, Elsevier, vol. 235(3), pages 740-754.
    9. Walter, Rico & Schulze, Philipp & Scholl, Armin, 2021. "SALSA: Combining branch-and-bound with dynamic programming to smoothen workloads in simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 295(3), pages 857-873.
    10. Bautista, Joaquín & Pereira, Jordi, 2011. "Procedures for the Time and Space constrained Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 212(3), pages 473-481, August.
    11. Sternatz, Johannes, 2015. "The joint line balancing and material supply problem," International Journal of Production Economics, Elsevier, vol. 159(C), pages 304-318.
    12. E. C. Sewell & S. H. Jacobson, 2012. "A Branch, Bound, and Remember Algorithm for the Simple Assembly Line Balancing Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 433-442, August.
    13. Otto, Alena & Otto, Christian & Scholl, Armin, 2013. "Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 228(1), pages 33-45.
    14. Klindworth, Hanne & Otto, Christian & Scholl, Armin, 2012. "On a learning precedence graph concept for the automotive industry," European Journal of Operational Research, Elsevier, vol. 217(2), pages 259-269.
    15. Bautista, Joaquín & Pereira, Jordi, 2009. "A dynamic programming based heuristic for the assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 787-794, May.
    16. Koltai, Tamás & Dimény, Imre & Gallina, Viola & Gaal, Alexander & Sepe, Chiara, 2021. "An analysis of task assignment and cycle times when robots are added to human-operated assembly lines, using mathematical programming models," International Journal of Production Economics, Elsevier, vol. 242(C).
    17. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    18. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    19. Boysen, Nils & Fliedner, Malte, 2008. "A versatile algorithm for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 184(1), pages 39-56, January.
    20. Raphael Kramer & Mauro Dell’Amico & Manuel Iori, 2017. "A batching-move iterated local search algorithm for the bin packing problem with generalized precedence constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6288-6304, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:172:y:2009:i:1:p:243-258:10.1007/s10479-009-0578-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.