IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v227y2015i1p3-2310.1007-s10479-013-1313-8.html
   My bibliography  Save this article

Hybrid metaheuristic method for determining locations for long-term health care facilities

Author

Listed:
  • Miroslav Marić
  • Zorica Stanimirović
  • Srdjan Božović

Abstract

Long-term health care facilities have gained an important role in today’s health care environments, due to the global trend of aging of human population. This paper considers the problem of network design in health-care systems, named the Long-Term Care Facility Location Problem (LTCFLP), which deals with determining locations for long-term care facilities among given potential sites. The objective is to minimize the maximal number of patients assigned to established facilities. We have developed an efficient hybrid method, based on combining the Evolutionary Approach (EA) with modified Variable Neighborhood Search method (VNS). The EA method is used in order to obtain a better initial solution that will enable the VNS to solve the LTCFLP more efficiently. The proposed hybrid algorithm is additionally enhanced by an exchange local search procedure. The algorithm is benchmarked on a data set from the literature with up to 80 potential candidate sites and on large-scale instances with up to 400 nodes. Presented computational results show that the proposed hybrid method quickly reaches all optimal solutions from the literature and in most cases outperforms existing heuristic methods for solving this problem. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Miroslav Marić & Zorica Stanimirović & Srdjan Božović, 2015. "Hybrid metaheuristic method for determining locations for long-term health care facilities," Annals of Operations Research, Springer, vol. 227(1), pages 3-23, April.
  • Handle: RePEc:spr:annopr:v:227:y:2015:i:1:p:3-23:10.1007/s10479-013-1313-8
    DOI: 10.1007/s10479-013-1313-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-013-1313-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-013-1313-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alfred A. Kuehn & Michael J. Hamburger, 1963. "A Heuristic Program for Locating Warehouses," Management Science, INFORMS, vol. 9(4), pages 643-666, July.
    2. Brotcorne, Luce & Laporte, Gilbert & Semet, Frederic, 2003. "Ambulance location and relocation models," European Journal of Operational Research, Elsevier, vol. 147(3), pages 451-463, June.
    3. Roberto Galvão & Luis Espejo & Brian Boffey, 2006. "Practical aspects associated with location planning for maternal and perinatal assistance in Brazil," Annals of Operations Research, Springer, vol. 143(1), pages 31-44, March.
    4. Geroliminis, Nikolas & Kepaptsoglou, Konstantinos & Karlaftis, Matthew G., 2011. "A hybrid hypercube - Genetic algorithm approach for deploying many emergency response mobile units in an urban network," European Journal of Operational Research, Elsevier, vol. 210(2), pages 287-300, April.
    5. Michael B. Teitz & Polly Bart, 1968. "Heuristic Methods for Estimating the Generalized Vertex Median of a Weighted Graph," Operations Research, INFORMS, vol. 16(5), pages 955-961, October.
    6. A. Cruz & W. Vélez & P. Thomson, 2010. "Optimal sensor placement for modal identification of structures using genetic algorithms—a case study: the olympic stadium in Cali, Colombia," Annals of Operations Research, Springer, vol. 181(1), pages 769-781, December.
    7. Rongbing Huang & Seokjin Kim & Mozart Menezes, 2010. "Facility location for large-scale emergencies," Annals of Operations Research, Springer, vol. 181(1), pages 271-286, December.
    8. E. Feldman & F. A. Lehrer & T. L. Ray, 1966. "Warehouse Location Under Continuous Economies of Scale," Management Science, INFORMS, vol. 12(9), pages 670-684, May.
    9. Kim, Dong-Guen & Kim, Yeong-Dae, 2010. "A branch and bound algorithm for determining locations of long-term care facilities," European Journal of Operational Research, Elsevier, vol. 206(1), pages 168-177, October.
    10. Galvao, Roberto D. & Acosta Espejo, Luis Gonzalo & Boffey, Brian, 2002. "A hierarchical model for the location of perinatal facilities in the municipality of Rio de Janeiro," European Journal of Operational Research, Elsevier, vol. 138(3), pages 495-517, May.
    11. Jack Brimberg & Pierre Hansen & Nenad Mladenović & Eric D. Taillard, 2000. "Improvements and Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem," Operations Research, INFORMS, vol. 48(3), pages 444-460, June.
    12. Murat Bilsel & Nurhan Davutyan, 2014. "Hospital efficiency with risk adjusted mortality as undesirable output: the Turkish case," Annals of Operations Research, Springer, vol. 221(1), pages 73-88, October.
    13. ReVelle, Charles, 1989. "Review, extension and prediction in emergency service siting models," European Journal of Operational Research, Elsevier, vol. 40(1), pages 58-69, May.
    14. Galvao, Roberto D. & Acosta Espejo, Luis Gonzalo & Boffey, Brian & Yates, Derek, 2006. "Load balancing and capacity constraints in a hierarchical location model," European Journal of Operational Research, Elsevier, vol. 172(2), pages 631-646, July.
    15. B Boffey & D Yates & R D Galvão, 2003. "An algorithm to locate perinatal facilities in the municipality of Rio de Janeiro," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(1), pages 21-31, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesica Armas & Angel A. Juan & Joan M. Marquès & João Pedro Pedroso, 2017. "Solving the deterministic and stochastic uncapacitated facility location problem: from a heuristic to a simheuristic," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1161-1176, October.
    2. Meisam Nasrollahi & Jafar Razmi, 2021. "A mathematical model for designing an integrated pharmaceutical supply chain with maximum expected coverage under uncertainty," Operational Research, Springer, vol. 21(1), pages 525-552, March.
    3. Derya Celik Turkoglu & Mujde Erol Genevois, 2020. "A comparative survey of service facility location problems," Annals of Operations Research, Springer, vol. 292(1), pages 399-468, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Dong-Guen & Kim, Yeong-Dae, 2010. "A branch and bound algorithm for determining locations of long-term care facilities," European Journal of Operational Research, Elsevier, vol. 206(1), pages 168-177, October.
    2. Bell, Michael G.H. & Fonzone, Achille & Polyzoni, Chrisanthi, 2014. "Depot location in degradable transport networks," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 148-161.
    3. Zvi Drezner & Jack Brimberg & Nenad Mladenović & Said Salhi, 2016. "New local searches for solving the multi-source Weber problem," Annals of Operations Research, Springer, vol. 246(1), pages 181-203, November.
    4. Farahani, Reza Zanjirani & Fallah, Samira & Ruiz, Rubén & Hosseini, Sara & Asgari, Nasrin, 2019. "OR models in urban service facility location: A critical review of applications and future developments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 1-27.
    5. Zhi-Hai Zhang & Kang Li, 2015. "A novel probabilistic formulation for locating and sizing emergency medical service stations," Annals of Operations Research, Springer, vol. 229(1), pages 813-835, June.
    6. Shariat-Mohaymany, Afshin & Babaei, Mohsen & Moadi, Saeed & Amiripour, Sayyed Mahdi, 2012. "Linear upper-bound unavailability set covering models for locating ambulances: Application to Tehran rural roads," European Journal of Operational Research, Elsevier, vol. 221(1), pages 263-272.
    7. J Brimberg & P Hansen & G Laporte & N Mladenović & D Urošević, 2008. "The maximum return-on-investment plant location problem with market share," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 399-406, March.
    8. McCormack, Richard & Coates, Graham, 2015. "A simulation model to enable the optimization of ambulance fleet allocation and base station location for increased patient survival," European Journal of Operational Research, Elsevier, vol. 247(1), pages 294-309.
    9. Faiz, Tasnim Ibn & Noor-E-Alam, Md, 2019. "Data center supply chain configuration design: A two-stage decision approach," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 119-135.
    10. Wangshu Mu & Daoqin Tong, 2020. "On solving large p-median problems," Environment and Planning B, , vol. 47(6), pages 981-996, July.
    11. Antunes, Antonio & Peeters, Dominique, 2001. "On solving complex multi-period location models using simulated annealing," European Journal of Operational Research, Elsevier, vol. 130(1), pages 190-201, April.
    12. Mousazadeh, M. & Torabi, S. Ali & Pishvaee, M.S. & Abolhassani, F., 2018. "Accessible, stable, and equitable health service network redesign: A robust mixed possibilistic-flexible approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 113-129.
    13. Pierre Hansen & Jack Brimberg & Dragan Urošević & Nenad Mladenović, 2007. "Primal-Dual Variable Neighborhood Search for the Simple Plant-Location Problem," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 552-564, November.
    14. H K Smith & G Laporte & P R Harper, 2009. "Locational analysis: highlights of growth to maturity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 140-148, May.
    15. Xu, Jing & Murray, Alan T. & Church, Richard L. & Wei, Ran, 2023. "Service allocation equity in location coverage analytics," European Journal of Operational Research, Elsevier, vol. 305(1), pages 21-37.
    16. Karakaya, Şakir & Meral, Sedef, 2022. "A biobjective hierarchical location-allocation approach for the regionalization of maternal-neonatal care," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    17. Roberto Galvão & Luis Espejo & Brian Boffey, 2006. "Practical aspects associated with location planning for maternal and perinatal assistance in Brazil," Annals of Operations Research, Springer, vol. 143(1), pages 31-44, March.
    18. Shishebori, Davood & Yousefi Babadi, Abolghasem, 2015. "Robust and reliable medical services network design under uncertain environment and system disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 268-288.
    19. Emelogu, Adindu & Chowdhury, Sudipta & Marufuzzaman, Mohammad & Bian, Linkan & Eksioglu, Burak, 2016. "An enhanced sample average approximation method for stochastic optimization," International Journal of Production Economics, Elsevier, vol. 182(C), pages 230-252.
    20. Yun, Lifen & Qin, Yong & Fan, Hongqiang & Ji, Changxu & Li, Xiaopeng & Jia, Limin, 2015. "A reliability model for facility location design under imperfect information," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 596-615.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:227:y:2015:i:1:p:3-23:10.1007/s10479-013-1313-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.