IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v111y2018icp113-129.html
   My bibliography  Save this article

Accessible, stable, and equitable health service network redesign: A robust mixed possibilistic-flexible approach

Author

Listed:
  • Mousazadeh, M.
  • Torabi, S. Ali
  • Pishvaee, M.S.
  • Abolhassani, F.

Abstract

This paper addresses a multi-period three-level health service network redesign problem. The problem involves strategic decisions on locating, closing or expanding the capacity of network’s facilities over the planning horizon, (re)designing an efficient referral system and (re)allocating patient zones to facilities while aiming at achieving an accessible, stable, and equitable network. A robust mixed possibilistic-flexible programming approach is devised to cope with imprecise parameters and soft constraints. Afterwards an improved augmented ε-constraint method is proposed to find the Pareto front. Finally, a real case study is provided to illustrate the performance of the proposed model and its solution procedure.

Suggested Citation

  • Mousazadeh, M. & Torabi, S. Ali & Pishvaee, M.S. & Abolhassani, F., 2018. "Accessible, stable, and equitable health service network redesign: A robust mixed possibilistic-flexible approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 113-129.
  • Handle: RePEc:eee:transe:v:111:y:2018:i:c:p:113-129
    DOI: 10.1016/j.tre.2018.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136655451730217X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2018.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harper, P. R. & Shahani, A. K. & Gallagher, J. E. & Bowie, C., 2005. "Planning health services with explicit geographical considerations: a stochastic location-allocation approach," Omega, Elsevier, vol. 33(2), pages 141-152, April.
    2. Smith, Honora K. & Harper, Paul R. & Potts, Chris N. & Thyle, Ann, 2009. "Planning sustainable community health schemes in rural areas of developing countries," European Journal of Operational Research, Elsevier, vol. 193(3), pages 768-777, March.
    3. Paul Dolan & Rebecca Shaw & Aki Tsuchiya & Alan Williams, 2005. "QALY maximisation and people's preferences: a methodological review of the literature," Health Economics, John Wiley & Sons, Ltd., vol. 14(2), pages 197-208, February.
    4. Brailsford, Sally & Vissers, Jan, 2011. "OR in healthcare: A European perspective," European Journal of Operational Research, Elsevier, vol. 212(2), pages 223-234, July.
    5. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    6. Syam, Siddhartha S. & Côté, Murray J., 2010. "A location-allocation model for service providers with application to not-for-profit health care organizations," Omega, Elsevier, vol. 38(3-4), pages 157-166, June.
    7. Benneyan, James C. & Musdal, Hande & Ceyhan, Mehmet Erkan & Shiner, Brian & Watts, Bradley V., 2012. "Specialty care single and multi-period location–allocation models within the Veterans Health Administration," Socio-Economic Planning Sciences, Elsevier, vol. 46(2), pages 136-148.
    8. Mestre, Ana Maria & Oliveira, Mónica Duarte & Barbosa-Póvoa, Ana Paula, 2015. "Location–allocation approaches for hospital network planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 240(3), pages 791-806.
    9. Kim, Dong-Guen & Kim, Yeong-Dae, 2010. "A branch and bound algorithm for determining locations of long-term care facilities," European Journal of Operational Research, Elsevier, vol. 206(1), pages 168-177, October.
    10. E D Güneş & H Yaman & B Çekyay & V Verter, 2014. "Matching patient and physician preferences in designing a primary care facility network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(4), pages 483-496, April.
    11. Galvao, Roberto D. & Acosta Espejo, Luis Gonzalo & Boffey, Brian, 2002. "A hierarchical model for the location of perinatal facilities in the municipality of Rio de Janeiro," European Journal of Operational Research, Elsevier, vol. 138(3), pages 495-517, May.
    12. Berman, Oded & Krass, Dmitry & Drezner, Zvi, 2003. "The gradual covering decay location problem on a network," European Journal of Operational Research, Elsevier, vol. 151(3), pages 474-480, December.
    13. Panagiotis Mitropoulos & Ioannis Mitropoulos & Ioannis Giannikos & Aris Sissouras, 2006. "A biobjective model for the locational planning of hospitals and health centers," Health Care Management Science, Springer, vol. 9(2), pages 171-179, May.
    14. Galvao, Roberto D. & Acosta Espejo, Luis Gonzalo & Boffey, Brian & Yates, Derek, 2006. "Load balancing and capacity constraints in a hierarchical location model," European Journal of Operational Research, Elsevier, vol. 172(2), pages 631-646, July.
    15. Dong-Guen Kim & Yeong-Dae Kim, 2013. "A Lagrangian heuristic algorithm for a public healthcare facility location problem," Annals of Operations Research, Springer, vol. 206(1), pages 221-240, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng, 2022. "An agent-based algorithm for dynamic routing in service networks," European Journal of Operational Research, Elsevier, vol. 303(2), pages 719-734.
    2. Alexandros Nikas & Angelos Fountoulakis & Aikaterini Forouli & Haris Doukas, 2022. "A robust augmented ε-constraint method (AUGMECON-R) for finding exact solutions of multi-objective linear programming problems," Operational Research, Springer, vol. 22(2), pages 1291-1332, April.
    3. Sheikholeslami, Mahnaz & Zarrinpoor, Naeme, 2023. "Designing an integrated humanitarian logistics network for the preparedness and response phases under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    4. Elorza, María Eugenia & Moscoso, Nebel Silvana & Blanco, Anibal Manuel, 2022. "Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    5. Sohrabi, Mahnaz & Zandieh, Mostafa & Shokouhifar, Mohammad, 2023. "Sustainable inventory management in blood banks considering health equity using a combined metaheuristic-based robust fuzzy stochastic programming," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    6. Caggiani, Leonardo & Colovic, Aleksandra & Ottomanelli, Michele, 2020. "An equality-based model for bike-sharing stations location in bicycle-public transport multimodal mobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 251-265.
    7. M. Boronoos & M. Mousazadeh & S. Ali Torabi, 2021. "A robust mixed flexible-possibilistic programming approach for multi-objective closed-loop green supply chain network design," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3368-3395, March.
    8. Karakaya, Şakir & Meral, Sedef, 2022. "A biobjective hierarchical location-allocation approach for the regionalization of maternal-neonatal care," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Khodaparasti & H. R. Maleki & S. Jahedi & M. E. Bruni & P. Beraldi, 2017. "Enhancing community based health programs in Iran: a multi-objective location-allocation model," Health Care Management Science, Springer, vol. 20(4), pages 485-499, December.
    2. Mendoza-Gómez, Rodolfo & Ríos-Mercado, Roger Z., 2022. "Regionalization of primary health care units with multi-institutional collaboration," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    3. Cardoso, Teresa & Oliveira, Mónica Duarte & Barbosa-Póvoa, Ana & Nickel, Stefan, 2016. "Moving towards an equitable long-term care network: A multi-objective and multi-period planning approach," Omega, Elsevier, vol. 58(C), pages 69-85.
    4. Maryam Radman & Kourosh Eshghi, 2018. "Designing a multi-service healthcare network based on the impact of patients’ flow among medical services," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 637-678, July.
    5. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    6. Cardoso, Teresa & Oliveira, Mónica Duarte & Barbosa-Póvoa, Ana & Nickel, Stefan, 2015. "An integrated approach for planning a long-term care network with uncertainty, strategic policy and equity considerations," European Journal of Operational Research, Elsevier, vol. 247(1), pages 321-334.
    7. Mestre, Ana Maria & Oliveira, Mónica Duarte & Barbosa-Póvoa, Ana Paula, 2015. "Location–allocation approaches for hospital network planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 240(3), pages 791-806.
    8. Karakaya, Şakir & Meral, Sedef, 2022. "A biobjective hierarchical location-allocation approach for the regionalization of maternal-neonatal care," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    9. Li Wang & Huan Shi & Lu Gan, 2018. "Healthcare Facility Location-Allocation Optimization for China’s Developing Cities Utilizing a Multi-Objective Decision Support Approach," Sustainability, MDPI, vol. 10(12), pages 1-22, December.
    10. Navneet Vidyarthi & Onur Kuzgunkaya, 2015. "The impact of directed choice on the design of preventive healthcare facility network under congestion," Health Care Management Science, Springer, vol. 18(4), pages 459-474, December.
    11. Liu, Shaonan & Kong, Nan & Parikh, Pratik & Wang, Mingzheng, 2023. "Optimal trauma care network redesign with government subsidy: A bilevel integer programming approach," Omega, Elsevier, vol. 119(C).
    12. Hoon Jang, 2019. "Designing capacity rollout plan for neonatal care service system in Korea," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 809-830, September.
    13. Miroslav Marić & Zorica Stanimirović & Srdjan Božović, 2015. "Hybrid metaheuristic method for determining locations for long-term health care facilities," Annals of Operations Research, Springer, vol. 227(1), pages 3-23, April.
    14. Soheil Davari, 2019. "The incremental cooperative design of preventive healthcare networks," Annals of Operations Research, Springer, vol. 272(1), pages 445-492, January.
    15. Jang, Hoon & Lee, Jun-Ho, 2019. "A hierarchical location model for determining capacities of neonatal intensive care units in Korea," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    16. Farahani, Reza Zanjirani & Fallah, Samira & Ruiz, Rubén & Hosseini, Sara & Asgari, Nasrin, 2019. "OR models in urban service facility location: A critical review of applications and future developments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 1-27.
    17. Zhou, Liping & Geng, Na & Jiang, Zhibin & Wang, Xiuxian, 2018. "Multi-objective capacity allocation of hospital wards combining revenue and equity," Omega, Elsevier, vol. 81(C), pages 220-233.
    18. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    19. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    20. De Boeck, Kim & Decouttere, Catherine & Jónasson, Jónas Oddur & Vandaele, Nico, 2022. "Vaccine supply chains in resource-limited settings: Mitigating the impact of rainy season disruptions," European Journal of Operational Research, Elsevier, vol. 301(1), pages 300-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:111:y:2018:i:c:p:113-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.