IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v18y2015i4p459-474.html
   My bibliography  Save this article

The impact of directed choice on the design of preventive healthcare facility network under congestion

Author

Listed:
  • Navneet Vidyarthi
  • Onur Kuzgunkaya

Abstract

Preventive healthcare (PH) programs and services aim at reducing the likelihood and severity of potentially life-threatening illness by early detection and prevention. The effectiveness of these programs depends on the participation level and the accessibility of the users to the facilities providing the services. Factors that impact the accessibility include the number, type, and location of the facilities as well as the assignment of the clients to these facilities. In this paper, we study the impact of system-optimal (i.e., directed) choice on the design of the preventive healthcare facility network under congestion. We present a model that simultaneously determines the location and the size of the facilities as well as the allocation of clients to these facilities so as to minimize the weighted sum of the total travel time and the congestion associated with waiting and service delay at the facilities. The problem is set up as a network of spatially distributed M/G/1 queues and formulated as a nonlinear mixed integer program. Using simple transformation of the nonlinear objective function and piecewise linear approximation, we reformulate the problem as a linear model. We present a cutting plane algorithm based exact (đťś–-optimal) solution approach. We analyze the tradeoff between travel time and queuing time and its impact on the location and capacity of the facilities as well as the allocation of clients to these facilities under a directed choice policy. We present a case study that deals with locating mammography clinics in Montreal, Canada. The results show that incorporating congestion in the PH facility network design substantially reduces the total time spent by clients. The proposed model allows policy makers to direct clients to facilities in an equitable manner resulting in better accessibility. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Navneet Vidyarthi & Onur Kuzgunkaya, 2015. "The impact of directed choice on the design of preventive healthcare facility network under congestion," Health Care Management Science, Springer, vol. 18(4), pages 459-474, December.
  • Handle: RePEc:kap:hcarem:v:18:y:2015:i:4:p:459-474
    DOI: 10.1007/s10729-014-9274-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10729-014-9274-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10729-014-9274-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harper, P. R. & Shahani, A. K. & Gallagher, J. E. & Bowie, C., 2005. "Planning health services with explicit geographical considerations: a stochastic location-allocation approach," Omega, Elsevier, vol. 33(2), pages 141-152, April.
    2. Vedat Verter & Sophie Lapierre, 2002. "Location of Preventive Health Care Facilities," Annals of Operations Research, Springer, vol. 110(1), pages 123-132, February.
    3. Murray Côté & Siddhartha Syam & W. Vogel & Diane Cowper, 2007. "A mixed integer programming model to locate traumatic brain injury treatment units in the Department of Veterans Affairs: a case study," Health Care Management Science, Springer, vol. 10(3), pages 253-267, September.
    4. Karen Gerard & Marian Shanahan & Jordan Louviere, 2003. "Using stated preference discrete choice modelling to inform health care decision-making: A pilot study of breast screening participation," Applied Economics, Taylor & Francis Journals, vol. 35(9), pages 1073-1085.
    5. Zhang, Yue & Berman, Oded & Verter, Vedat, 2009. "Incorporating congestion in preventive healthcare facility network design," European Journal of Operational Research, Elsevier, vol. 198(3), pages 922-935, November.
    6. Schweikhart, Sharon Bergman & Smith-Daniels, Vicki L., 1993. "Location and service mix decisions for a managed health care network," Socio-Economic Planning Sciences, Elsevier, vol. 27(4), pages 289-302, December.
    7. Syam, Siddhartha S. & Côté, Murray J., 2010. "A location-allocation model for service providers with application to not-for-profit health care organizations," Omega, Elsevier, vol. 38(3-4), pages 157-166, June.
    8. E D GĂĽneş & H Yaman & B Çekyay & V Verter, 2014. "Matching patient and physician preferences in designing a primary care facility network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(4), pages 483-496, April.
    9. Yue Zhang & Oded Berman & Patrice Marcotte & Vedat Verter, 2010. "A bilevel model for preventive healthcare facility network design with congestion," IISE Transactions, Taylor & Francis Journals, vol. 42(12), pages 865-880.
    10. Boffey, Brian & Galvao, Roberto & Espejo, Luis, 2007. "A review of congestion models in the location of facilities with immobile servers," European Journal of Operational Research, Elsevier, vol. 178(3), pages 643-662, May.
    11. James E. Stahl & Nan Kong & Steven M. Shechter & Andrew J. Schaefer & Mark S. Roberts, 2005. "A Methodological Framework for Optimally Reorganizing Liver Transplant Regions," Medical Decision Making, , vol. 25(1), pages 35-46, January.
    12. Bjorn P. Berg, 2013. "Location Models in Healthcare," International Series in Operations Research & Management Science, in: Brian T. Denton (ed.), Handbook of Healthcare Operations Management, edition 127, chapter 0, pages 387-402, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kerim Dogan & Mumtaz Karatas & Ertan Yakici, 2020. "A model for locating preventive health care facilities," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Ă–sterr. Gesellschaft fĂĽr Operations Research (Ă–GOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 1091-1121, September.
    2. B. L. Garcia & R. Bekker & R. D. Mei & N. H. Chavannes & N. D. Kruyt, 2021. "Optimal patient protocols in regional acute stroke care," Health Care Management Science, Springer, vol. 24(3), pages 515-530, September.
    3. Kaushal Kumar, 2023. "Location Analysis of Primary Health Care Centers: A Case Study of Mohalla Clinics in Delhi," SN Operations Research Forum, Springer, vol. 4(2), pages 1-29, June.
    4. Ralf Krohn & Sven MĂĽller & Knut Haase, 2021. "Preventive healthcare facility location planning with quality-conscious clients," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft fĂĽr Operations Research e.V., vol. 43(1), pages 59-87, March.
    5. Jahidur Rahman Khan & Suzanne J. Carroll & Neil T. Coffee & Matthew Warner-Smith & David Roder & Mark Daniel, 2021. "Residential Area Sociodemographic and Breast Cancer Screening Venue Location Built Environmental Features Associated with Women’s Use of Closest Venue in Greater Sydney, Australia," IJERPH, MDPI, vol. 18(21), pages 1-12, October.
    6. Maryam Radman & Kourosh Eshghi, 2018. "Designing a multi-service healthcare network based on the impact of patients’ flow among medical services," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 637-678, July.
    7. Kucukyazici, Beste & Zhang, Yue & Ardestani-Jaafari, Amir & Song, Lijie, 2020. "Incorporating patient preferences in the design and operation of cancer screening facility networks," European Journal of Operational Research, Elsevier, vol. 287(2), pages 616-632.
    8. Esma Akgun & Sibel A. Alumur & F. Safa Erenay, 2023. "Determining optimal COVID-19 testing center locations and capacities," Health Care Management Science, Springer, vol. 26(4), pages 748-769, December.
    9. Klein, Michael G. & Verter, Vedat & Moses, Brian G., 2020. "Designing a rural network of dialysis facilities," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1088-1100.
    10. Hoseinpour, Pooya & Ahmadi-Javid, Amir, 2016. "A profit-maximization location-capacity model for designing a service system with risk of service interruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 113-134.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Shaonan & Kong, Nan & Parikh, Pratik & Wang, Mingzheng, 2023. "Optimal trauma care network redesign with government subsidy: A bilevel integer programming approach," Omega, Elsevier, vol. 119(C).
    2. Maryam Radman & Kourosh Eshghi, 2018. "Designing a multi-service healthcare network based on the impact of patients’ flow among medical services," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 637-678, July.
    3. Ralf Krohn & Sven MĂĽller & Knut Haase, 2021. "Preventive healthcare facility location planning with quality-conscious clients," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft fĂĽr Operations Research e.V., vol. 43(1), pages 59-87, March.
    4. Kerim Dogan & Mumtaz Karatas & Ertan Yakici, 2020. "A model for locating preventive health care facilities," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Ă–sterr. Gesellschaft fĂĽr Operations Research (Ă–GOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 1091-1121, September.
    5. Soheil Davari, 2019. "The incremental cooperative design of preventive healthcare networks," Annals of Operations Research, Springer, vol. 272(1), pages 445-492, January.
    6. Zhang, Yue & Liang, Liping & Liu, Emma & Chen, Chong & Atkins, Derek, 2016. "Patient choice analysis and demand prediction for a health care diagnostics company," European Journal of Operational Research, Elsevier, vol. 251(1), pages 198-205.
    7. Syam, Siddhartha S. & Côté, Murray J., 2010. "A location-allocation model for service providers with application to not-for-profit health care organizations," Omega, Elsevier, vol. 38(3-4), pages 157-166, June.
    8. Mousazadeh, M. & Torabi, S. Ali & Pishvaee, M.S. & Abolhassani, F., 2018. "Accessible, stable, and equitable health service network redesign: A robust mixed possibilistic-flexible approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 113-129.
    9. Davari, Soheil & Kilic, Kemal & Naderi, Siamak, 2016. "A heuristic approach to solve the preventive health care problem with budget and congestion constraints," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 442-453.
    10. Soheil Davari & Kemal Kilic & Gurdal Ertek, 2015. "Fuzzy bi-objective preventive health care network design," Health Care Management Science, Springer, vol. 18(3), pages 303-317, September.
    11. Mohammadi, M. & Dehbari, S. & Vahdani, Behnam, 2014. "Design of a bi-objective reliable healthcare network with finite capacity queue under service covering uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 15-41.
    12. Kucukyazici, Beste & Zhang, Yue & Ardestani-Jaafari, Amir & Song, Lijie, 2020. "Incorporating patient preferences in the design and operation of cancer screening facility networks," European Journal of Operational Research, Elsevier, vol. 287(2), pages 616-632.
    13. Jing Yao & Alan T. Murray, 2014. "Locational Effectiveness of Clinics Providing Sexual and Reproductive Health Services to Women in Rural Mozambique," International Regional Science Review, , vol. 37(2), pages 172-193, April.
    14. Benneyan, James C. & Musdal, Hande & Ceyhan, Mehmet Erkan & Shiner, Brian & Watts, Bradley V., 2012. "Specialty care single and multi-period location–allocation models within the Veterans Health Administration," Socio-Economic Planning Sciences, Elsevier, vol. 46(2), pages 136-148.
    15. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    16. Robert Aboolian & Oded Berman & Dmitry Krass, 2012. "Profit Maximizing Distributed Service System Design with Congestion and Elastic Demand," Transportation Science, INFORMS, vol. 46(2), pages 247-261, May.
    17. Li Wang & Huan Shi & Lu Gan, 2018. "Healthcare Facility Location-Allocation Optimization for China’s Developing Cities Utilizing a Multi-Objective Decision Support Approach," Sustainability, MDPI, vol. 10(12), pages 1-22, December.
    18. Vidyarthi, Navneet & Jayaswal, Sachin, 2013. "Efficient Solution of a Class of Location-Allocation Problems with Stochastic Demand and Congestion," IIMA Working Papers WP2013-11-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    19. Klein, Michael G. & Verter, Vedat & Moses, Brian G., 2020. "Designing a rural network of dialysis facilities," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1088-1100.
    20. Mestre, Ana Maria & Oliveira, Mónica Duarte & Barbosa-Póvoa, Ana Paula, 2015. "Location–allocation approaches for hospital network planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 240(3), pages 791-806.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:18:y:2015:i:4:p:459-474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.