IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v214y2014i1p31-4810.1007-s10479-010-0744-8.html
   My bibliography  Save this article

Technological externalities and environmental policy

Author

Listed:
  • Isabelle Piot-Lepetit

Abstract

The directional distance function defined in a DEA type non-parametric framework provides a highly flexible structure for modelling producer behaviour in the presence of polluting emissions and environmental regulations. This article presents five models describing different “command and control” type policy measures as an economic one about nitrogen pollution of agricultural origin. These measures concern the management of the mandatory constraint on the spreading of organic manure and the investment in manure treatment facilities. The study also simulates the use of an economic instrument by enforcing the individual manure constraint at an aggregated level. Using individual and aggregated DEA models, this paper provides insights into the impact of individual and collective management of environmental policy instruments. Copyright Springer Science+Business Media, LLC 2014

Suggested Citation

  • Isabelle Piot-Lepetit, 2014. "Technological externalities and environmental policy," Annals of Operations Research, Springer, vol. 214(1), pages 31-48, March.
  • Handle: RePEc:spr:annopr:v:214:y:2014:i:1:p:31-48:10.1007/s10479-010-0744-8
    DOI: 10.1007/s10479-010-0744-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-010-0744-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-010-0744-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-Paul Chavas & Thomas L. Cox, 1999. "A Generalized Distance Function and the Analysis of Production Efficiency," Southern Economic Journal, John Wiley & Sons, vol. 66(2), pages 294-318, October.
    2. Luenberger, David G., 1992. "Benefit functions and duality," Journal of Mathematical Economics, Elsevier, vol. 21(5), pages 461-481.
    3. Timo Kuosmanen, 2005. "Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1077-1082.
    4. Kuosmanen, Timo & Cherchye, Laurens & Sipilainen, Timo, 2006. "The law of one price in data envelopment analysis: Restricting weight flexibility across firms," European Journal of Operational Research, Elsevier, vol. 170(3), pages 735-757, May.
    5. Montgomery, W. David, 1972. "Markets in licenses and efficient pollution control programs," Journal of Economic Theory, Elsevier, vol. 5(3), pages 395-418, December.
    6. Rolf Färe & Shawna Grosskopf, 2003. "Nonparametric Productivity Analysis with Undesirable Outputs: Comment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(4), pages 1070-1074.
    7. Alan Randall, 1972. "Market Solutions to Externality Problems: Theory and Practice," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 54(2), pages 175-183.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Baumol,William J. & Oates,Wallace E., 1988. "The Theory of Environmental Policy," Cambridge Books, Cambridge University Press, number 9780521322249.
    10. Fare, Rolf & Zelenyuk, Valentin, 2003. "On aggregate Farrell efficiencies," European Journal of Operational Research, Elsevier, vol. 146(3), pages 615-620, May.
    11. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Martinho, Vítor João Pereira Domingues, 2017. "Efficiency, total factor productivity and returns to scale in a sustainable perspective: An analysis in the European Union at farm and regional level," Land Use Policy, Elsevier, vol. 68(C), pages 232-245.
    3. Hervé Leleu & Albane Tarnaud, 2016. "The duality of Shephard’s weakly disposable technology," Working Papers 2016-EQM-06, IESEG School of Management.
    4. Heidari, Mohammad Davoud & Turner, Ian & Ardestani-Jaafari, Amir & Pelletier, Nathan, 2021. "Operations research for environmental assessment of crop-livestock production systems," Agricultural Systems, Elsevier, vol. 193(C).
    5. Ouardighi, Fouad El & Sim, Jeong Eun & Kim, Bowon, 2016. "Pollution accumulation and abatement policy in a supply chain," European Journal of Operational Research, Elsevier, vol. 248(3), pages 982-996.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valentin Zelenyuk, 2023. "Productivity analysis: roots, foundations, trends and perspectives," Journal of Productivity Analysis, Springer, vol. 60(3), pages 229-247, December.
    2. Pham, Manh D. & Zelenyuk, Valentin, 2019. "Weak disposability in nonparametric production analysis: A new taxonomy of reference technology sets," European Journal of Operational Research, Elsevier, vol. 274(1), pages 186-198.
    3. Fukuyama, Hirofumi & Matousek, Roman, 2018. "Nerlovian revenue inefficiency in a bank production context: Evidence from Shinkin banks," European Journal of Operational Research, Elsevier, vol. 271(1), pages 317-330.
    4. Shen, Zhiyang & Boussemart, Jean-Philippe & Leleu, Hervé, 2017. "Aggregate green productivity growth in OECD’s countries," International Journal of Production Economics, Elsevier, vol. 189(C), pages 30-39.
    5. Podinovski, Victor V. & Kuosmanen, Timo, 2011. "Modelling weak disposability in data envelopment analysis under relaxed convexity assumptions," European Journal of Operational Research, Elsevier, vol. 211(3), pages 577-585, June.
    6. Abad, Arnaud & Briec, Walter, 2019. "On the axiomatic of pollution-generating technologies: Non-parametric production analysis," European Journal of Operational Research, Elsevier, vol. 277(1), pages 377-390.
    7. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2022. "Bank production with nonperforming loans: A minimum distance directional slack inefficiency approach," Omega, Elsevier, vol. 113(C).
    8. Manh D. Pham & Valentin Zelenyuk, 2017. "Convexity, Disposability and Returns to Scale in Production Analysis," CEPA Working Papers Series WP042017, School of Economics, University of Queensland, Australia.
    9. Lee, Chia-Yen, 2014. "Meta-data envelopment analysis: Finding a direction towards marginal profit maximization," European Journal of Operational Research, Elsevier, vol. 237(1), pages 207-216.
    10. Tsionas, Mike & Parmeter, Christopher F. & Zelenyuk, Valentin, 2023. "Bayesian Artificial Neural Networks for frontier efficiency analysis," Journal of Econometrics, Elsevier, vol. 236(2).
    11. Kuosmanen, Timo & Kazemi Matin, Reza, 2011. "Duality of weakly disposable technology," Omega, Elsevier, vol. 39(5), pages 504-512, October.
    12. Lee, Chia-Yen & Zhou, Peng, 2015. "Directional shadow price estimation of CO2, SO2 and NOx in the United States coal power industry 1990–2010," Energy Economics, Elsevier, vol. 51(C), pages 493-502.
    13. Timo Kuosmanen & Mika Kortelainen & Timo Sipiläinen & Laurens Cherchye, 2005. "Firm and Industry Level Profit Efficiency Analysis Under Incomplete Price Data: A Nonparametric Approach based on Absolute and Uniform Shadow Prices," Microeconomics 0509011, University Library of Munich, Germany.
    14. Zuoren Sun & Rundong Luo & Dequn Zhou, 2015. "Optimal Path for Controlling Sectoral CO 2 Emissions Among China’s Regions: A Centralized DEA Approach," Sustainability, MDPI, vol. 8(1), pages 1-20, December.
    15. Cho, Bo-Hyun & Hooker, Neal H., 2004. "Measuring The Impact Of Food Safety Regulation-An Output Directional Distance Function Approach," 2004 Annual meeting, August 1-4, Denver, CO 20016, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. Mehdiloo, Mahmood & Podinovski, Victor V., 2021. "Strong, weak and Farrell efficient frontiers of technologies satisfying different production assumptions," European Journal of Operational Research, Elsevier, vol. 294(1), pages 295-311.
    17. Cho, Bo-Hyun & Hooker, Neal H., 2004. "The Opportunity Cost Of Food Safety Regulation - An Output Directional Distance Function Approach," Working Papers 28316, Ohio State University, Department of Agricultural, Environmental and Development Economics.
    18. Juan Aparicio & José L. Zofío & Jesús T. Pastor, 2023. "Decomposing Economic Efficiency into Technical and Allocative Components: An Essential Property," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 98-129, April.
    19. Kuosmanen, Timo & Kortelainen, Mika & Sipiläinen, Timo & Cherchye, Laurens, 2010. "Firm and industry level profit efficiency analysis using absolute and uniform shadow prices," European Journal of Operational Research, Elsevier, vol. 202(2), pages 584-594, April.
    20. Bogetoft, Peter & Leth Hougaard, Jens, 2004. "Super efficiency evaluations based on potential slack," European Journal of Operational Research, Elsevier, vol. 152(1), pages 14-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:214:y:2014:i:1:p:31-48:10.1007/s10479-010-0744-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.