IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v196y2012i1p491-51610.1007-s10479-012-1098-1.html
   My bibliography  Save this article

Scheduling problems with position dependent job processing times: computational complexity results

Author

Listed:
  • Radosław Rudek

Abstract

In this paper, we analyse single machine scheduling problems with learning and aging effects to minimize one of the following objectives: the makespan with release dates, the maximum lateness and the number of late jobs. The phenomena of learning and aging are modeled by job processing times described by non-increasing (learning) or non-decreasing (aging) functions dependent on the number of previously processed jobs, i.e., a job position in a sequence. We prove that the considered problems are strongly NP-hard even if job processing times are described by simple linear functions dependent on a number of processed jobs. Additionally, we show a property of equivalence between problems with learning and aging models. We also prove that if the function describing decrease/increase of a job processing time is the same for each job then the problems with the considered objectives are polynomially solvable even if the function is arbitrary. Therefore, we determine the boundary between polynomially solvable and strongly NP-hard cases. Copyright The Author(s) 2012

Suggested Citation

  • Radosław Rudek, 2012. "Scheduling problems with position dependent job processing times: computational complexity results," Annals of Operations Research, Springer, vol. 196(1), pages 491-516, July.
  • Handle: RePEc:spr:annopr:v:196:y:2012:i:1:p:491-516:10.1007/s10479-012-1098-1
    DOI: 10.1007/s10479-012-1098-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1098-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1098-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W-H Kuo & D-L Yang, 2008. "Minimizing the makespan in a single-machine scheduling problem with the cyclic process of an aging effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 416-420, March.
    2. Xingong Zhang & Guangle Yan & Wanzhen Huang & Guochun Tang, 2011. "Single-machine scheduling problems with time and position dependent processing times," Annals of Operations Research, Springer, vol. 186(1), pages 345-356, June.
    3. Biskup, Dirk, 2008. "A state-of-the-art review on scheduling with learning effects," European Journal of Operational Research, Elsevier, vol. 188(2), pages 315-329, July.
    4. Dvir Shabtay & George Steiner, 2008. "The single-machine earliness-tardiness scheduling problem with due date assignment and resource-dependent processing times," Annals of Operations Research, Springer, vol. 159(1), pages 25-40, March.
    5. Kailiang Xu & Zuren Feng & Liangjun Ke, 2010. "A branch and bound algorithm for scheduling jobs with controllable processing times on a single machine to meet due dates," Annals of Operations Research, Springer, vol. 181(1), pages 303-324, December.
    6. Paul S. Adler & Kim B. Clark, 1991. "Behind the Learning Curve: A Sketch of the Learning Process," Management Science, INFORMS, vol. 37(3), pages 267-281, March.
    7. Cheng, T. C. E. & Ding, Q. & Lin, B. M. T., 2004. "A concise survey of scheduling with time-dependent processing times," European Journal of Operational Research, Elsevier, vol. 152(1), pages 1-13, January.
    8. Lee, Wen-Chiung & Wu, Chin-Chia & Hsu, Peng-Hsiang, 2010. "A single-machine learning effect scheduling problem with release times," Omega, Elsevier, vol. 38(1-2), pages 3-11, February.
    9. Yang, Suh-Jenq & Yang, Dar-Li, 2010. "Minimizing the makespan on single-machine scheduling with aging effect and variable maintenance activities," Omega, Elsevier, vol. 38(6), pages 528-533, December.
    10. Biskup, Dirk, 1999. "Single-machine scheduling with learning considerations," European Journal of Operational Research, Elsevier, vol. 115(1), pages 173-178, May.
    11. A Janiak & R Rudek, 2010. "Scheduling jobs under an aging effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(6), pages 1041-1048, June.
    12. Dar-Li Yang & Wen-Hung Kuo, 2009. "Single-machine scheduling with both deterioration and learning effects," Annals of Operations Research, Springer, vol. 172(1), pages 315-327, November.
    13. Joseph Leung & Haibing Li & Michael Pinedo, 2008. "Scheduling orders on either dedicated or flexible machines in parallel to minimize total weighted completion time," Annals of Operations Research, Springer, vol. 159(1), pages 107-123, March.
    14. Wu, Chin-Chia & Lee, Wen-Chiung, 2008. "Single-machine group-scheduling problems with deteriorating setup times and job-processing times," International Journal of Production Economics, Elsevier, vol. 115(1), pages 128-133, September.
    15. A Bachman & A Janiak, 2004. "Scheduling jobs with position-dependent processing times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(3), pages 257-264, March.
    16. G Mosheiov, 2001. "Parallel machine scheduling with a learning effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(10), pages 1165-1169, October.
    17. Jaber, Mohamad Y. & Bonney, Maurice, 1999. "The economic manufacture/order quantity (EMQ/EOQ) and the learning curve: Past, present, and future," International Journal of Production Economics, Elsevier, vol. 59(1-3), pages 93-102, March.
    18. George Steiner & Rui Zhang, 2011. "Minimizing the weighted number of tardy jobs with due date assignment and capacity-constrained deliveries," Annals of Operations Research, Springer, vol. 191(1), pages 171-181, November.
    19. Ji-Bo Wang & Ming-Zheng Wang, 2011. "Worst-case behavior of simple sequencing rules in flow shop scheduling with general position-dependent learning effects," Annals of Operations Research, Springer, vol. 191(1), pages 155-169, November.
    20. T.C. Cheng & Guoqing Wang, 2000. "Single Machine Scheduling with Learning Effect Considerations," Annals of Operations Research, Springer, vol. 98(1), pages 273-290, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baruch Mor, 2022. "Minmax common flow-allowance problems with convex resource allocation and position-dependent workloads," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 79-97, January.
    2. Kinable, Joris & Cire, Andre A. & van Hoeve, Willem-Jan, 2017. "Hybrid optimization methods for time-dependent sequencing problems," European Journal of Operational Research, Elsevier, vol. 259(3), pages 887-897.
    3. Peng Liu & Xiaoli Wang, 2017. "Maximum Lateness Scheduling on Two-Person Cooperative Games with Variable Processing Times and Common Due Date," Journal of Optimization, Hindawi, vol. 2017, pages 1-7, April.
    4. Gara-Ali, Ahmed & Finke, Gerd & Espinouse, Marie-Laure, 2016. "Parallel-machine scheduling with maintenance: Praising the assignment problem," European Journal of Operational Research, Elsevier, vol. 252(1), pages 90-97.
    5. Markó Horváth & Tamás Kis, 2020. "Polyhedral results for position-based scheduling of chains on a single machine," Annals of Operations Research, Springer, vol. 284(1), pages 283-322, January.
    6. Adam Janiak & Mikhail Kovalyov & Maciej Lichtenstein, 2013. "Strong NP-hardness of scheduling problems with learning or aging effect," Annals of Operations Research, Springer, vol. 206(1), pages 577-583, July.
    7. Yashar Ahmadov & Petri Helo, 2018. "A cloud based job sequencing with sequence-dependent setup for sheet metal manufacturing," Annals of Operations Research, Springer, vol. 270(1), pages 5-24, November.
    8. Lin-Hui Sun & Kai Cui & Ju-Hong Chen & Jun Wang & Xian-Chen He, 2013. "Research on permutation flow shop scheduling problems with general position-dependent learning effects," Annals of Operations Research, Springer, vol. 211(1), pages 473-480, December.
    9. Baruch Mor & Gur Mosheiov, 2018. "A note: minimizing total absolute deviation of job completion times on unrelated machines with general position-dependent processing times and job-rejection," Annals of Operations Research, Springer, vol. 271(2), pages 1079-1085, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rustogi, Kabir & Strusevich, Vitaly A., 2012. "Simple matching vs linear assignment in scheduling models with positional effects: A critical review," European Journal of Operational Research, Elsevier, vol. 222(3), pages 393-407.
    2. Finke, Gerd & Gara-Ali, Ahmed & Espinouse, Marie-Laure & Jost, Vincent & Moncel, Julien, 2017. "Unified matrix approach to solve production-maintenance problems on a single machine," Omega, Elsevier, vol. 66(PA), pages 140-146.
    3. Ji-Bo Wang & Ming-Zheng Wang, 2011. "Worst-case behavior of simple sequencing rules in flow shop scheduling with general position-dependent learning effects," Annals of Operations Research, Springer, vol. 191(1), pages 155-169, November.
    4. Yang, Suh-Jenq & Yang, Dar-Li, 2010. "Minimizing the makespan on single-machine scheduling with aging effect and variable maintenance activities," Omega, Elsevier, vol. 38(6), pages 528-533, December.
    5. Cheng, T.C.E. & Wu, Chin-Chia & Chen, Juei-Chao & Wu, Wen-Hsiang & Cheng, Shuenn-Ren, 2013. "Two-machine flowshop scheduling with a truncated learning function to minimize the makespan," International Journal of Production Economics, Elsevier, vol. 141(1), pages 79-86.
    6. Chen, Ke & Cheng, T.C.E. & Huang, Hailiang & Ji, Min & Yao, Danli, 2023. "Single-machine scheduling with autonomous and induced learning to minimize total weighted number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 309(1), pages 24-34.
    7. Zhang Xingong & Wang Yong & Bai Shikun, 2016. "Single-machine group scheduling problems with deteriorating and learning effect," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(10), pages 2402-2410, July.
    8. Rustogi, Kabir & Strusevich, Vitaly A., 2012. "Single machine scheduling with general positional deterioration and rate-modifying maintenance," Omega, Elsevier, vol. 40(6), pages 791-804.
    9. Bai, Danyu & Tang, Mengqian & Zhang, Zhi-Hai & Santibanez-Gonzalez, Ernesto DR, 2018. "Flow shop learning effect scheduling problem with release dates," Omega, Elsevier, vol. 78(C), pages 21-38.
    10. Min Ji & Chou-Jung Hsu & Dar-Li Yang, 2013. "Single-machine scheduling with deteriorating jobs and aging effects under an optional maintenance activity consideration," Journal of Combinatorial Optimization, Springer, vol. 26(3), pages 437-447, October.
    11. Biskup, Dirk, 2008. "A state-of-the-art review on scheduling with learning effects," European Journal of Operational Research, Elsevier, vol. 188(2), pages 315-329, July.
    12. Peng Liu & Xiaoli Wang, 2017. "Maximum Lateness Scheduling on Two-Person Cooperative Games with Variable Processing Times and Common Due Date," Journal of Optimization, Hindawi, vol. 2017, pages 1-7, April.
    13. A Janiak & R Rudek, 2010. "Scheduling jobs under an aging effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(6), pages 1041-1048, June.
    14. Li, Gang & Wang, Xiao-Yuan & Wang, Ji-Bo & Sun, Lin-Yan, 2013. "Worst case analysis of flow shop scheduling problems with a time-dependent learning effect," International Journal of Production Economics, Elsevier, vol. 142(1), pages 98-104.
    15. Zhongyi Jiang & Fangfang Chen & Xiandong Zhang, 2017. "Single-machine scheduling with times-based and job-dependent learning effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 809-815, July.
    16. Heuser, Patricia & Tauer, Björn, 2023. "Single-machine scheduling with product category-based learning and forgetting effects," Omega, Elsevier, vol. 115(C).
    17. Wen-Hung Wu & Yunqiang Yin & T C E Cheng & Win-Chin Lin & Juei-Chao Chen & Shin-Yi Luo & Chin-Chia Wu, 2017. "A combined approach for two-agent scheduling with sum-of-processing-times-based learning effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(2), pages 111-120, February.
    18. Kai-biao Sun & Hong-xing Li, 2009. "Some single-machine scheduling problems with actual time and position dependent learning effects," Fuzzy Information and Engineering, Springer, vol. 1(2), pages 161-177, June.
    19. Jun Pei & Bayi Cheng & Xinbao Liu & Panos M. Pardalos & Min Kong, 2019. "Single-machine and parallel-machine serial-batching scheduling problems with position-based learning effect and linear setup time," Annals of Operations Research, Springer, vol. 272(1), pages 217-241, January.
    20. Jiang, Zhongyi & Chen, Fangfang & Kang, Huiyan, 2013. "Single-machine scheduling problems with actual time-dependent and job-dependent learning effect," European Journal of Operational Research, Elsevier, vol. 227(1), pages 76-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:196:y:2012:i:1:p:491-516:10.1007/s10479-012-1098-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.