IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v73y2021i4d10.1007_s10463-020-00773-0.html
   My bibliography  Save this article

Robust test for structural instability in dynamic factor models

Author

Listed:
  • Byungsoo Kim

    (Yeungnam University)

  • Junmo Song

    (Kyungpook National University)

  • Changryong Baek

    (Sungkyunkwan University)

Abstract

In this paper, we consider a robust test for structural breaks in dynamic factor models. The proposed framework considers structural changes when the underlying high-dimensional time series is contaminated by outlying observations, which are often observed in many real applications such as fMRI, economics and finance. We propose a test based on the robust estimation of a vector autoregressive model for principal component factors using minimum density power divergence. The simulations study shows excellent finite sample performance, higher powers while achieving good sizes in all cases considered. Our method is illustrated to the resting state fMRI series to detect brain connectivity changes.

Suggested Citation

  • Byungsoo Kim & Junmo Song & Changryong Baek, 2021. "Robust test for structural instability in dynamic factor models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 821-853, August.
  • Handle: RePEc:spr:aistmt:v:73:y:2021:i:4:d:10.1007_s10463-020-00773-0
    DOI: 10.1007/s10463-020-00773-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-020-00773-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-020-00773-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taewook Lee & Moosup Kim & Changryong Baek, 2015. "Tests for Volatility Shifts in Garch Against Long-Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 127-153, March.
    2. Atkinson, A. C. & Koopman, S. J. & Shephard, N., 1997. "Detecting shocks: Outliers and breaks in time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 387-422, October.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Breitung, Jörg & Eickmeier, Sandra, 2011. "Testing for structural breaks in dynamic factor models," Journal of Econometrics, Elsevier, vol. 163(1), pages 71-84, July.
    5. Chen, Liang & Dolado, Juan J. & Gonzalo, Jesús, 2014. "Detecting big structural breaks in large factor models," Journal of Econometrics, Elsevier, vol. 180(1), pages 30-48.
    6. Warwick, J., 2005. "A data-based method for selecting tuning parameters in minimum distance estimators," Computational Statistics & Data Analysis, Elsevier, vol. 48(3), pages 571-585, March.
    7. Balke, Nathan S & Fomby, Thomas B, 1994. "Large Shocks, Small Shocks, and Economic Fluctuations: Outliers in Macroeconomic Time Series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 9(2), pages 181-200, April-Jun.
    8. Ledolter, Johannes, 1989. "The effect of additive outliers on the forecasts from ARIMA models," International Journal of Forecasting, Elsevier, vol. 5(2), pages 231-240.
    9. Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
    10. Batsidis, A. & Horváth, L. & Martín, N. & Pardo, L. & Zografos, K., 2013. "Change-point detection in multinomial data using phi-divergence test statistics," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 53-66.
    11. Song, Junmo, 2020. "Robust test for dispersion parameter change in discretely observed diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 142(C).
    12. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
    13. Han, Xu & Inoue, Atsushi, 2015. "Tests For Parameter Instability In Dynamic Factor Models," Econometric Theory, Cambridge University Press, vol. 31(5), pages 1117-1152, October.
    14. Abhik Ghosh & Ayanendranath Basu, 2017. "The minimum S-divergence estimator under continuous models: the Basu–Lindsay approach," Statistical Papers, Springer, vol. 58(2), pages 341-372, June.
    15. Michael Robbins & Colin Gallagher & Robert Lund & Alexander Aue, 2011. "Mean shift testing in correlated data," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(5), pages 498-511, September.
    16. A. Basu & A. Mandal & N. Martin & L. Pardo, 2013. "Testing statistical hypotheses based on the density power divergence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 319-348, April.
    17. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    18. Song, Junmo & Baek, Changryong, 2019. "Detecting structural breaks in realized volatility," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 58-75.
    19. Sangyeol Lee & Junmo Song, 2009. "Minimum density power divergence estimator for GARCH models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(2), pages 316-341, August.
    20. Bai, Jushan & Ng, Serena, 2008. "Large Dimensional Factor Analysis," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(2), pages 89-163, June.
    21. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    22. Baek, Changryong & Gates, Katheleen M. & Leinwand, Benjamin & Pipiras, Vladas, 2021. "Two sample tests for high-dimensional autocovariances," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    2. Luke Hartigan & James Morley, 2020. "A Factor Model Analysis of the Australian Economy and the Effects of Inflation Targeting," The Economic Record, The Economic Society of Australia, vol. 96(314), pages 271-293, September.
    3. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    4. Luke Hartigan, 2015. "Changes in the Factor Structure of the U.S. Economy: Permanent Breaks or Business Cycle Regimes?," Discussion Papers 2015-17, School of Economics, The University of New South Wales.
    5. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
    6. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
    7. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    8. Francisco Corona & Pilar Poncela & Esther Ruiz, 2017. "Determining the number of factors after stationary univariate transformations," Empirical Economics, Springer, vol. 53(1), pages 351-372, August.
    9. Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
    10. Jaeheon Jung, 2019. "Estimating a Large Covariance Matrix in Time-varying Factor Models," Papers 1910.11965, arXiv.org.
    11. Bai, Jushan & Duan, Jiangtao & Han, Xu, 2024. "The likelihood ratio test for structural changes in factor models," Journal of Econometrics, Elsevier, vol. 238(2).
    12. Chen, Sanpan & Cui, Guowei & Zhang, Jianhua, 2017. "On testing for structural break of coefficients in factor-augmented regression models," Economics Letters, Elsevier, vol. 161(C), pages 141-145.
    13. Yamamoto, Yohei & Tanaka, Shinya, 2015. "Testing for factor loading structural change under common breaks," Journal of Econometrics, Elsevier, vol. 189(1), pages 187-206.
    14. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    15. Laurent Callot & Johannes Tang Kristensen, 2016. "Regularized Estimation of Structural Instability in Factor Models: The US Macroeconomy and the Great Moderation," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 437-479, Emerald Group Publishing Limited.
    16. Miranda Gualdrón, Karen Alejandra & Poncela, Pilar & Ruiz Ortega, Esther, 2021. "Dynamic factor models: does the specification matter?," DES - Working Papers. Statistics and Econometrics. WS 32210, Universidad Carlos III de Madrid. Departamento de Estadística.
    17. Baltagi, Badi H. & Kao, Chihwa & Wang, Fa, 2021. "Estimating and testing high dimensional factor models with multiple structural changes," Journal of Econometrics, Elsevier, vol. 220(2), pages 349-365.
    18. Baltagi, Badi H. & Kao, Chihwa & Wang, Fa, 2017. "Identification and estimation of a large factor model with structural instability," Journal of Econometrics, Elsevier, vol. 197(1), pages 87-100.
    19. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    20. Chen, Liang, 2015. "Estimating the common break date in large factor models," Economics Letters, Elsevier, vol. 131(C), pages 70-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:73:y:2021:i:4:d:10.1007_s10463-020-00773-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.