IDEAS home Printed from https://ideas.repec.org/a/sbe/breart/v31y2011i1a2767.html
   My bibliography  Save this article

Some Alternatives for Robust Estimation of the Spectrum in Stationary Processes

Author

Listed:
  • Fajardo, Fabio Alexander

Abstract

This paper is dedicated to estimation of the spectral density of stationary linear processes in the presence of additive outliers. We suggest the use of robust periodogram proposed by Fajardo et. al. (2009) (LPR) with different smoothing windows. Empirical results showed the robustness of the estimator under additive outliers. A real data application is presented with IGP-DI series.

Suggested Citation

  • Fajardo, Fabio Alexander, 2011. "Some Alternatives for Robust Estimation of the Spectrum in Stationary Processes," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 31(1), March.
  • Handle: RePEc:sbe:breart:v:31:y:2011:i:1:a:2767
    as

    Download full text from publisher

    File URL: https://periodicos.fgv.br/bre/article/view/2767
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haldrup, Niels & Nielsen, Morten Orregaard, 2007. "Estimation of fractional integration in the presence of data noise," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3100-3114, March.
    2. Deo, Rohit S. & Hurvich, Clifford M., 2001. "On The Log Periodogram Regression Estimator Of The Memory Parameter In Long Memory Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 17(4), pages 686-710, August.
    3. Ledolter, Johannes, 1989. "The effect of additive outliers on the forecasts from ARIMA models," International Journal of Forecasting, Elsevier, vol. 5(2), pages 231-240.
    4. Kaizô I. BeltraTo & Peter Bloomfield, 1987. "Determining The Bandwidth Of A Kernel Spectrum Estimate," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(1), pages 21-38, January.
    5. Clifford M. Hurvich & Rohit Deo & Julia Brodsky, 1998. "The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 19-46, January.
    6. Yanyuan Ma & Marc G. Genton, 2000. "Highly Robust Estimation of the Autocovariance Function," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(6), pages 663-684, November.
    7. Gemai Chen & Bovas Abraham & Shelton Peiris, 1994. "Lag Window Estimation Of The Degree Of Differencing In Fractionally Integrated Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(5), pages 473-487, September.
    8. Céline Lévy‐Leduc & Hélène Boistard & Eric Moulines & Murad S. Taqqu & Valderio A. Reisen, 2011. "Robust estimation of the scale and of the autocovariance function of Gaussian short‐ and long‐range dependent processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(2), pages 135-156, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam McCloskey & Pierre Perron, 2012. "Memory Parameter Estimation in the Presence of Level Shifts and Deterministic Trends," Working Papers 2012-15, Brown University, Department of Economics.
    2. Mccloskey, Adam & Perron, Pierre, 2013. "Memory Parameter Estimation In The Presence Of Level Shifts And Deterministic Trends," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1196-1237, December.
    3. Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
    4. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    5. Erhard Reschenhofer & Manveer K. Mangat, 2021. "Fast computation and practical use of amplitudes at non-Fourier frequencies," Computational Statistics, Springer, vol. 36(3), pages 1755-1773, September.
    6. Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.
    7. Andersen, Torben G. & Varneskov, Rasmus T., 2021. "Consistent inference for predictive regressions in persistent economic systems," Journal of Econometrics, Elsevier, vol. 224(1), pages 215-244.
    8. Arteche, J., 2006. "Semiparametric estimation in perturbed long memory series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2118-2141, December.
    9. Adam McCloskey, 2013. "Estimation of the long-memory stochastic volatility model parameters that is robust to level shifts and deterministic trends," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 285-301, May.
    10. Grassi, Stefano & Santucci de Magistris, Paolo, 2014. "When long memory meets the Kalman filter: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
    11. J. Arteche, 2012. "Semiparametric Inference in Correlated Long Memory Signal Plus Noise Models," Econometric Reviews, Taylor & Francis Journals, vol. 31(4), pages 440-474.
    12. Per Frederiksen & Morten Orregaard Nielsen, 2008. "Bias-Reduced Estimation of Long-Memory Stochastic Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 496-512, Fall.
    13. Erhard Reschenhofer & Manveer K. Mangat, 2020. "Reducing the Bias of the Smoothed Log Periodogram Regression for Financial High-Frequency Data," Econometrics, MDPI, vol. 8(4), pages 1-15, October.
    14. Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Estimation of Long Memory in Integrated Variance," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 785-814, October.
    15. Maheu John, 2005. "Can GARCH Models Capture Long-Range Dependence?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-43, December.
    16. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    17. M. Angeles Carnero & Ana Pérez & Esther Ruiz, 2016. "Identification of asymmetric conditional heteroscedasticity in the presence of outliers," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(1), pages 179-201, March.
    18. Jonathan Wright, 2002. "Log-Periodogram Estimation Of Long Memory Volatility Dependencies With Conditionally Heavy Tailed Returns," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 397-417.
    19. Jin Lee, 2004. "Wavelet transform for log periodogram regression in long memory stochastic volatility model," Econometric Society 2004 Far Eastern Meetings 682, Econometric Society.
    20. Hsieh, Meng-Chen & Hurvich, Clifford M. & Soulier, Philippe, 2007. "Asymptotics for duration-driven long range dependent processes," Journal of Econometrics, Elsevier, vol. 141(2), pages 913-949, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sbe:breart:v:31:y:2011:i:1:a:2767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Núcleo de Computação da FGV EPGE (email available below). General contact details of provider: https://edirc.repec.org/data/sbeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.