IDEAS home Printed from https://ideas.repec.org/a/sae/sagope/v10y2020i2p2158244020929310.html
   My bibliography  Save this article

Estimating the Economic Viability of Cotton Growers in Punjab Province, Pakistan

Author

Listed:
  • Wei Wei
  • Zulqarnain Mushtaq
  • Amir Ikram
  • Muhammad Faisal
  • Zhang Wan-Li
  • Muhammad Irshad Ahmad

Abstract

Considering the farmer’s decision of quitting cotton plantation due to low economic incentives, the current research is intended to evaluate the economic viability of cotton growers in Punjab. A comprehensively pretested questionnaire was used to gather the information from 240 cotton growers in face-to-face interviews. The cost–benefit ratio was estimated by calculating incurred variable costs, revenue generated, net farm income, and gross margin. The data envelopment analysis was applied to explore the economic, technical, and allocative efficiencies of the cotton producers. The second-stage regression analysis was also conducted to evaluate the socioeconomic factors affecting farmer’s efficiencies by applying the Tobit regression model. The small farmers were found to be most vulnerable group with low returns on investments and low technical and economics efficiencies score. The results also indicate that the financial constraints, difficulty to access agriculture credit, access to extension services, and lack of formal education are the main factors affecting farmer’s efficiency. The government should regulate the input prices and agriculture department should provide formal training to the farmers to adopt better management practices to reduce cost of production.

Suggested Citation

  • Wei Wei & Zulqarnain Mushtaq & Amir Ikram & Muhammad Faisal & Zhang Wan-Li & Muhammad Irshad Ahmad, 2020. "Estimating the Economic Viability of Cotton Growers in Punjab Province, Pakistan," SAGE Open, , vol. 10(2), pages 21582440209, May.
  • Handle: RePEc:sae:sagope:v:10:y:2020:i:2:p:2158244020929310
    DOI: 10.1177/2158244020929310
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/2158244020929310
    Download Restriction: no

    File URL: https://libkey.io/10.1177/2158244020929310?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guofeng Wang & Nan Lin & Xiaoxue Zhou & Zhihui Li & Xiangzheng Deng, 2018. "Three-Stage Data Envelopment Analysis of Agricultural Water Use Efficiency: A Case Study of the Heihe River Basin," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    2. Singh, Surendra & Mittal, J. P. & Singh, M. P. & Bakhshi, R., 1988. "Energy-use patterns under various farming systems in Punjab," Applied Energy, Elsevier, vol. 30(4), pages 261-268.
    3. Basso, Antonella & Casarin, Francesco & Funari, Stefania, 2018. "How well is the museum performing? A joint use of DEA and BSC to measure the performance of museums," Omega, Elsevier, vol. 81(C), pages 67-84.
    4. L. Dean Hiebert, 1974. "Risk, Learning, and the Adoption of Fertilizer Responsive Seed Varieties," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 56(4), pages 764-768.
    5. Hatirli, Selim Adem & Ozkan, Burhan & Fert, Cemal, 2006. "Energy inputs and crop yield relationship in greenhouse tomato production," Renewable Energy, Elsevier, vol. 31(4), pages 427-438.
    6. Song, Malin & Peng, Jun & Wang, Jianlin & Zhao, Jiajia, 2018. "Environmental efficiency and economic growth of China: A Ray slack-based model analysis," European Journal of Operational Research, Elsevier, vol. 269(1), pages 51-63.
    7. lo Storto, Corrado, 2018. "The analysis of the cost-revenue production cycle efficiency of the Italian airports: A NSBM DEA approach," Journal of Air Transport Management, Elsevier, vol. 72(C), pages 77-85.
    8. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Jafari, Ali & Mohammadi, Ali, 2011. "Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach," Energy, Elsevier, vol. 36(5), pages 2765-2772.
    9. Mohammadi, Ali & Omid, Mahmoud, 2010. "Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran," Applied Energy, Elsevier, vol. 87(1), pages 191-196, January.
    10. Tzouvelekas, Vangelis & Pantzios, Christos J. & Fotopoulos, Christos, 2001. "Economic Efficiency in Organic Farming: Evidence from Cotton Farms in Viotia, Greece," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 33(1), pages 35-48, April.
    11. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Mohammadi, Ali, 2011. "Optimization of energy consumption and input costs for apple production in Iran using data envelopment analysis," Energy, Elsevier, vol. 36(2), pages 909-916.
    12. Bozoglu, Mehmet & Ceyhan, Vedat, 2007. "Measuring the technical efficiency and exploring the inefficiency determinants of vegetable farms in Samsun province, Turkey," Agricultural Systems, Elsevier, vol. 94(3), pages 649-656, June.
    13. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein, 2013. "Applying data envelopment analysis approach to improve energy efficiency and reduce GHG (greenhouse gas) emission of wheat production," Energy, Elsevier, vol. 58(C), pages 588-593.
    14. Imran, Muhammad Ali & Ali, Asghar & Ashfaq, Muhammad & Hassan, Sarfraz & Culas, Richard & Ma, Chunbo, 2019. "Impact of climate smart agriculture (CSA) through sustainable irrigation management on Resource use efficiency: A sustainable production alternative for cotton," Land Use Policy, Elsevier, vol. 88(C).
    15. Kizilaslan, Halil, 2009. "Input-output energy analysis of cherries production in Tokat Province of Turkey," Applied Energy, Elsevier, vol. 86(7-8), pages 1354-1358, July.
    16. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Jafari, Ali & Mohammadi, Ali, 2011. "Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach," Applied Energy, Elsevier, vol. 88(11), pages 3765-3772.
    17. M. Ishaq Javed & Sultan Ali Adil & Sarfaraz Hassan & Asghar Ali, 2009. "An Efficiency Analysis of Punjab’s Cotton-Wheat System," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 14(2), pages 97-124, Jul-Dec.
    18. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    19. Hatirli, Selim Adem & Ozkan, Burhan & Fert, Cemal, 2005. "An econometric analysis of energy input-output in Turkish agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(6), pages 608-623, December.
    20. Abdul Hameed & Ihtsham ul Haq Padda & Abdul Salam, 2014. "Estimation of Productivity and Efficiency of Cotton Farmers: A Case Study of District Dera Ghazi Khan," Business & Economic Review, Institute of Management Sciences, Peshawar, Pakistan, vol. 6(2), pages 63-82, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tumelo Francinah Ramukhithi & Khathutshelo Agree Nephawe & Takalani Judas Mpofu & Thomas Raphulu & Karen Munhuweyi & Fhulufhelo Vincent Ramukhithi & Bohani Mtileni, 2023. "An Assessment of Economic Sustainability and Efficiency in Small-Scale Broiler Farms in Limpopo Province: A Review," Sustainability, MDPI, vol. 15(3), pages 1-26, January.
    2. Mushtaq, Zulqarnain & Wei, Wei & Jamil, Ihsan & Sharif, Maimoona & Chandio, Abbas Ali & Ahmad, Fayyaz, 2022. "Evaluating the factors of coal consumption inefficiency in energy intensive industries of China: An epsilon-based measure model," Resources Policy, Elsevier, vol. 78(C).
    3. Junbin Wang, 2022. "Drivers of the Sustainable Development of Agro-industrial Parks: Evidence from Jiangsu Province, China," SAGE Open, , vol. 12(4), pages 21582440221, December.
    4. Huang-Ping Yen & Po-Chi Chen & Kung-Cheng Ho, 2021. "Analyzing Destination Accessibility From the Perspective of Efficiency Among Tourism Origin Countries," SAGE Open, , vol. 11(2), pages 21582440211, April.
    5. Abigail Gbemisola Adeyonu & John Chiwuzulum Odozi, 2022. "What are the Drivers of Profitability of Broiler Farms in the North-central and South-west Geo-political Zones of Nigeria?," SAGE Open, , vol. 12(1), pages 21582440211, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sara Ilahi & Yongchang Wu & Muhammad Ahsan Ali Raza & Wenshan Wei & Muhammad Imran & Lyankhua Bayasgalankhuu, 2019. "Optimization Approach for Improving Energy Efficiency and Evaluation of Greenhouse Gas Emission of Wheat Crop using Data Envelopment Analysis," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    2. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    3. Houshyar, Ehsan & Azadi, Hossein & Almassi, Morteza & Sheikh Davoodi, Mohammad Javad & Witlox, Frank, 2012. "Sustainable and efficient energy consumption of corn production in Southwest Iran: Combination of multi-fuzzy and DEA modeling," Energy, Elsevier, vol. 44(1), pages 672-681.
    4. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    5. Elahi, Ehsan & Zhang, Zhixin & Khalid, Zainab & Xu, Haiyun, 2022. "Application of an artificial neural network to optimise energy inputs: An energy- and cost-saving strategy for commercial poultry farms," Energy, Elsevier, vol. 244(PB).
    6. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    7. Bhunia, Snehasish & Karmakar, Subrata & Bhattacharjee, Suvendu & Roy, Kingshuk & Kanthal, Sahely & Pramanick, Mahadev & Baishya, Aniket & Mandal, Biswapati, 2021. "Optimization of energy consumption using data envelopment analysis (DEA) in rice-wheat-green gram cropping system under conservation tillage practices," Energy, Elsevier, vol. 236(C).
    8. Elahi, Ehsan & Weijun, Cui & Jha, Sunil Kumar & Zhang, Huiming, 2019. "Estimation of realistic renewable and non-renewable energy use targets for livestock production systems utilising an artificial neural network method: A step towards livestock sustainability," Energy, Elsevier, vol. 183(C), pages 191-204.
    9. Morteza Zangeneh & Narges Banaeian & Sean Clark, 2021. "Meta-Analysis on Energy-Use Patterns of Cropping Systems in Iran," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    10. Asgharipour, Mohammad Reza & Mondani, Farzad & Riahinia, Shahram, 2012. "Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province," Energy, Elsevier, vol. 44(1), pages 1078-1084.
    11. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza, 2012. "Energy consumption flow and econometric models of two plum cultivars productions in Tehran province of Iran," Energy, Elsevier, vol. 44(1), pages 211-216.
    12. Unakıtan, Gökhan & Aydın, Başak, 2018. "A comparison of energy use efficiency and economic analysis of wheat and sunflower production in Turkey: A case study in Thrace Region," Energy, Elsevier, vol. 149(C), pages 279-285.
    13. Naseri, Hakim & Parashkoohi, Mohammad Gholami & Ranjbar, Iraj & Zamani, Davood Mohammad, 2021. "Energy-economic and life cycle assessment of sugarcane production in different tillage systems," Energy, Elsevier, vol. 217(C).
    14. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Jafari, Ali & Mohammadi, Ali, 2011. "Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach," Applied Energy, Elsevier, vol. 88(11), pages 3765-3772.
    15. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    16. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza & Heidari, Mohammad Davoud, 2013. "Energy use pattern and sensitivity analysis of energy inputs and input costs for pear production in Iran," Renewable Energy, Elsevier, vol. 51(C), pages 7-12.
    17. Stanisław Bielski & Renata Marks-Bielska & Paweł Wiśniewski, 2022. "Investigation of Energy and Economic Balance and GHG Emissions in the Production of Different Cultivars of Buckwheat ( Fagopyrum esculentum Moench): A Case Study in Northeastern Poland," Energies, MDPI, vol. 16(1), pages 1-24, December.
    18. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein & Rajaeifar, Mohammad Ali, 2014. "Application of artificial neural networks for prediction of output energy and GHG emissions in potato production in Iran," Agricultural Systems, Elsevier, vol. 123(C), pages 120-127.
    19. Rabiatul Munirah Alpandi & Fakarudin Kamarudin & Peter Wanke & Muhammad Syafiq Muhammad Salam & Hafezali Iqbal Hussain, 2022. "Energy Efficiency in Production of Swiftlet Edible Bird’s Nest," Sustainability, MDPI, vol. 14(10), pages 1-14, May.
    20. Mohammadi, Ali & Omid, Mahmoud, 2010. "Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran," Applied Energy, Elsevier, vol. 87(1), pages 191-196, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:sagope:v:10:y:2020:i:2:p:2158244020929310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.