IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v235y2021i5p941-958.html
   My bibliography  Save this article

Continuous improvement of imperfect maintenance actions in PAS and PAR models

Author

Listed:
  • Thiago Lima de Barros
  • Rodrigo Sampaio Lopes

Abstract

In this paper, an unavailability model is proposed to define the test and maintenance policies of systems that are subject to hidden failure and degradation, assuming practices of continuous improvement (CI) under imperfect maintenance actions with Proportional Age Setback (PAS) and Proportional Age Reduction (PAR). For this, two CI equations are analyzed to estimate the progress of maintenance effectiveness over time, and a maximum unavailability constraint is incorporated into the model for evaluation of safety point of view. A numerical application was performed, and the results showed that by adopting CI practices over maintenance actions, the unavailability of the system is reduced in greater proportion over time, besides contributing positively to safety.

Suggested Citation

  • Thiago Lima de Barros & Rodrigo Sampaio Lopes, 2021. "Continuous improvement of imperfect maintenance actions in PAS and PAR models," Journal of Risk and Reliability, , vol. 235(5), pages 941-958, October.
  • Handle: RePEc:sae:risrel:v:235:y:2021:i:5:p:941-958
    DOI: 10.1177/1748006X211001671
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X211001671
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X211001671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martorell, P. & Martón, I. & Sánchez, A.I. & Martorell, S., 2017. "Unavailability model for demand-caused failures of safety components addressing degradation by demand-induced stress, maintenance effectiveness and test efficiency," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 18-27.
    2. Zhao, Xiujie & He, Shuguang & Xie, Min, 2018. "Utilizing experimental degradation data for warranty cost optimization under imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 108-119.
    3. Martón, I. & Martorell, P. & Mullor, R. & Sánchez, A.I. & Martorell, S., 2016. "Optimization of test and maintenance of ageing components consisting of multiple items and addressing effectiveness," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 151-158.
    4. Souraj Salah & Juan A. Carretero & Abdur Rahim, 2010. "The integration of quality management and continuous improvement methodologies with management systems," International Journal of Productivity and Quality Management, Inderscience Enterprises Ltd, vol. 6(3), pages 269-288.
    5. Hongzhou Wang & Hoang Pham, 2006. "Reliability and Optimal Maintenance," Springer Series in Reliability Engineering, Springer, number 978-1-84628-325-3, January.
    6. S. Martorell & P. Martorell & A. I. Sánchez & R. Mullor & I. Martón, 2017. "Parameter Estimation of a Reliability Model of Demand-Caused and Standby-Related Failures of Safety Components Exposed to Degradation by Demand Stress and Ageing That Undergo Imperfect Maintenance," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-11, December.
    7. V. Jayabalan & Dipak Chaudhuri, 1992. "Optimal maintenance and replacement policy for a deteriorating system with increased mean downtime," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(1), pages 67-78, February.
    8. Yaping Li & Zhen Chen & Ershun Pan, 2018. "Joint Economic Design of CUSUM Control Chart and Age-Based Imperfect Preventive Maintenance Policy," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-11, June.
    9. Sanchez, Ana & Carlos, Sofia & Martorell, Sebastian & Villanueva, Jose F., 2009. "Addressing imperfect maintenance modelling uncertainty in unavailability and cost based optimization," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 22-32.
    10. Pham, Hoang & Wang, Hongzhou, 1996. "Imperfect maintenance," European Journal of Operational Research, Elsevier, vol. 94(3), pages 425-438, November.
    11. MERCIER, Sophie & CASTRO, I.T., 2019. "Stochastic comparisons of imperfect maintenance models for a gamma deteriorating system," European Journal of Operational Research, Elsevier, vol. 273(1), pages 237-248.
    12. Do, Phuc & Voisin, Alexandre & Levrat, Eric & Iung, Benoit, 2015. "A proactive condition-based maintenance strategy with both perfect and imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 22-32.
    13. Martón, I. & Sánchez, A.I. & Martorell, S., 2015. "Ageing PSA incorporating effectiveness of maintenance and testing," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 131-140.
    14. Upton, David, 1996. "Mechanisms for building and sustaining operations improvement," European Management Journal, Elsevier, vol. 14(3), pages 215-228, June.
    15. A. Khatab, 2018. "Maintenance optimization in failure-prone systems under imperfect preventive maintenance," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 707-717, March.
    16. KanÄ ev, DuÅ¡ko & Gjorgiev, Blaže & Volkanovski, Andrija & ÄŒepin, Marko, 2016. "Time-dependent unavailability of equipment in an ageing NPP: Sensitivity study of a developed model," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 11-20.
    17. Zhou, Xiaojun & Wu, Changjie & Li, Yanting & Xi, Lifeng, 2016. "A preventive maintenance model for leased equipment subject to internal degradation and external shock damage," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martón, I. & Sánchez, A.I. & Carlos, S. & Mullor, R. & Martorell, S., 2023. "Prognosis of wear-out effect on of safety equipment reliability for nuclear power plants long-term safe operation," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    2. Martorell, S. & Martón, I. & Sánchez, A. & Carlos, S., 2020. "Harmonisation of surveillance requirements and maintenance in a context of ageing and obsolescence based on reliability, availability and risk information," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    3. Dai, Anshu & Wang, Xin & Li, Yu & Li, Ting & He, Shuguang, 2023. "Design of a performance-based warranty policy with replacement–repair strategy and cumulative cost threshold," International Journal of Production Economics, Elsevier, vol. 255(C).
    4. Nguyen, Kim-Anh & Do, Phuc & Grall, Antoine, 2017. "Joint predictive maintenance and inventory strategy for multi-component systems using Birnbaum’s structural importance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 249-261.
    5. Liu, Qiannan & Ma, Lin & Wang, Naichao & Chen, Ankang & Jiang, Qihang, 2022. "A condition-based maintenance model considering multiple maintenance effects on the dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    6. Martorell, P. & Martón, I. & Sánchez, A.I. & Martorell, S., 2017. "Unavailability model for demand-caused failures of safety components addressing degradation by demand-induced stress, maintenance effectiveness and test efficiency," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 18-27.
    7. Zhao, Xiujie & He, Shuguang & Xie, Min, 2018. "Utilizing experimental degradation data for warranty cost optimization under imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 108-119.
    8. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    9. Mosayebi Omshi, E. & Grall, A., 2021. "Replacement and imperfect repair of deteriorating system: Study of a CBM policy and impact of repair efficiency," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Maxim Finkelstein & Ji Hwan Cha, 2022. "Reducing degradation and age of items in imperfect repair modeling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1058-1081, December.
    11. Xiaofeng Wang & Shu Guo & Jian Shen & Yang Liu, 2020. "Optimization of preventive maintenance for series manufacturing system by differential evolution algorithm," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 745-757, March.
    12. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    13. Tanwar, Monika & Rai, Rajiv N. & Bolia, Nomesh, 2014. "Imperfect repair modeling using Kijima type generalized renewal process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 24-31.
    14. Ait Mokhtar, El Hassene & Laggoune, Radouane & Chateauneuf, Alaa, 2023. "Imperfect maintenance modeling and assessment of repairable multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    15. Wang, Naichao & Hu, Jiawen & Ma, Lin & Xiao, Boping & Liao, Haitao, 2020. "Availability Analysis and Preventive Maintenance Planning for Systems with General Time Distributions," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    16. Yang, Li & Zhao, Yu & Peng, Rui & Ma, Xiaobing, 2018. "Hybrid preventive maintenance of competing failures under random environment," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 130-140.
    17. Kowal, Karol, 2022. "Lifetime reliability and availability simulation for the electrical system of HTTR coupled to the electricity-hydrogen cogeneration plant," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    18. Wang, Weikai & Chen, Xian, 2023. "Piecewise deterministic Markov process for condition-based imperfect maintenance models," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    19. Xu, Ren-Hong & Lai, Yung-Cheng & Huang, Kwei-Long, 2021. "Decision support models for annual catenary maintenance task identification and assignment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    20. Truong-Ba, Huy & Cholette, Michael E. & Borghesani, Pietro & Ma, Lin & Kent, Geoff, 2021. "Condition-based inspection policies for boiler heat exchangers," European Journal of Operational Research, Elsevier, vol. 291(1), pages 232-243.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:235:y:2021:i:5:p:941-958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.