IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0256542.html
   My bibliography  Save this article

Regional effects of the renewable energy components on CO2 emissions of Asia-Pacific countries

Author

Listed:
  • Man-Wen Tian
  • Shu-Rong Yan
  • Mohsen Khezri
  • Muhaamad Sharif Karimi
  • Mahnaz Mamghaderi
  • Yousaf Ali Khan

Abstract

This paper utilizes spatial econometric reenactments to examine the geographic effects of different types of environmentally friendly power on corban discharges. The example covers 31 nations in the Asia-Pacific district during the time frame 2000 to 2018. The spatial connection in the model was affirmed by symptomatic testing, and the spatial Durbin model was picked as the last model. Results show that Gross domestic product per capita, receptiveness to business sectors, unfamiliar direct venture, energy force, and urbanization critically affect CO2 emanations. In correlation, just wind and sunlight-based energy have added to a generous abatement in ozone harming substance emanations in nations over the long run. In contrast, hydropower, bioenergy, and geothermal energy discoveries have been irrelevant. A cross-sectional examination worldview delineated that nations with more elevated sunlight-based energy yield have higher CO2 outflows, while nations with lower levels have lower CO2 emanations. The presence of spatial impacts in the model gave off an impression of the negative consequences for homegrown CO2 outflows of Gross domestic product per capita and exchange transparency of adjoining nations. Furthermore, energy power and higher creation of sustainable power in adjoining nations will prompt lower homegrown CO2 outflows.

Suggested Citation

  • Man-Wen Tian & Shu-Rong Yan & Mohsen Khezri & Muhaamad Sharif Karimi & Mahnaz Mamghaderi & Yousaf Ali Khan, 2021. "Regional effects of the renewable energy components on CO2 emissions of Asia-Pacific countries," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-17, October.
  • Handle: RePEc:plo:pone00:0256542
    DOI: 10.1371/journal.pone.0256542
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0256542
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0256542&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0256542?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit, 2016. "The dynamic impact of renewable energy consumption on CO2 emissions: A revisited Environmental Kuznets Curve approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 838-845.
    2. Nguyen, Kim Hanh & Kakinaka, Makoto, 2019. "Renewable energy consumption, carbon emissions, and development stages: Some evidence from panel cointegration analysis," Renewable Energy, Elsevier, vol. 132(C), pages 1049-1057.
    3. Sahbi Farhani, 2013. "Renewable Energy Consumption, Economic Growth and Co2 Emissions: Evidence from Selected Mena Countries," Energy Economics Letters, Asian Economic and Social Society, vol. 1(2), pages 24-41.
    4. Paramati, Sudharshan Reddy & Mo, Di & Gupta, Rakesh, 2017. "The effects of stock market growth and renewable energy use on CO2 emissions: Evidence from G20 countries," Energy Economics, Elsevier, vol. 66(C), pages 360-371.
    5. Apergis, Nicholas & Payne, James E. & Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth," Ecological Economics, Elsevier, vol. 69(11), pages 2255-2260, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    2. Mark Awe Tachega & Xilong Yao & Yang Liu & Dulal Ahmed & Wilhermina Ackaah & Mohamed Gabir & Justice Gyimah, 2021. "Income Heterogeneity and the Environmental Kuznets Curve Turning Points: Evidence from Africa," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    3. Anh The Vo & Duc Hong Vo & Quan Thai-Thuong Le, 2019. "CO 2 Emissions, Energy Consumption, and Economic Growth: New Evidence in the ASEAN Countries," JRFM, MDPI, vol. 12(3), pages 1-20, September.
    4. Khezri, Mohsen & Heshmati, Almas & Khodaei, Mehdi, 2022. "Environmental implications of economic complexity and its role in determining how renewable energies affect CO2 emissions," Applied Energy, Elsevier, vol. 306(PB).
    5. Zafar, Muhammad Wasif & Zaidi, Syed Anees Haider & Sinha, Avik & Gedikli, Ayfer & Hou, Fujun, 2019. "The role of stock market and banking sector development, and renewable energy consumption in carbon emissions: Insights from G-7 and N-11 countries," Resources Policy, Elsevier, vol. 62(C), pages 427-436.
    6. Dong, Kangyin & Hochman, Gal & Zhang, Yaqing & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions," Energy Economics, Elsevier, vol. 75(C), pages 180-192.
    7. Zheng, Huanyu & Song, Malin & Shen, Zhiyang, 2021. "The evolution of renewable energy and its impact on carbon reduction in China," Energy, Elsevier, vol. 237(C).
    8. Dong, Kangyin & Sun, Renjin & Hochman, Gal, 2017. "Do natural gas and renewable energy consumption lead to less CO2 emission? Empirical evidence from a panel of BRICS countries," Energy, Elsevier, vol. 141(C), pages 1466-1478.
    9. Warsame, Abdimalik Ali & Sheik-Ali, Ibrahim Abdukadir & Mohamed, Jama & Sarkodie, Samuel Asumadu, 2022. "Renewables and institutional quality mitigate environmental degradation in Somalia," Renewable Energy, Elsevier, vol. 194(C), pages 1184-1191.
    10. Danish & Recep Ulucak, 2020. "The pathway toward pollution mitigation: Does institutional quality make a difference?," Business Strategy and the Environment, Wiley Blackwell, vol. 29(8), pages 3571-3583, December.
    11. Dong, Kangyin & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "Does natural gas consumption mitigate CO2 emissions: Testing the environmental Kuznets curve hypothesis for 14 Asia-Pacific countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 419-429.
    12. Özlem Karadağ Albayrak & Samet Topal & Serhat Çamkaya, 2022. "The Impact of Economic Growth, Renewable Energy, Non-renewable Energy and Trade Openness on the Ecological Footprint and Forecasting in Turkiye: an Case of the ARDL and NMGM Forecasting Model," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 10(2), pages 139-154, December.
    13. Usman, Muhammad & Makhdum, Muhammad Sohail Amjad, 2021. "What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development," Renewable Energy, Elsevier, vol. 179(C), pages 12-28.
    14. Yi-Bin Chiu & Wenwen Zhang, 2023. "Moderating Effect of Financial Development on the Relationship between Renewable Energy and Carbon Emissions," Energies, MDPI, vol. 16(3), pages 1-18, February.
    15. Muhammad Haseeb & Irwan Shah Zainal Abidin & Qazi Muhammad Adnan Hye & Nira Hariyatie Hartani, 2019. "The Impact of Renewable Energy on Economic Well-Being of Malaysia: Fresh Evidence from Auto Regressive Distributed Lag Bound Testing Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 269-275.
    16. Moataz Elshimy & Khadiga M. El-Aasar, 2020. "Carbon footprint, renewable energy, non-renewable energy, and livestock: testing the environmental Kuznets curve hypothesis for the Arab world," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6985-7012, October.
    17. Xiaohang Ren & Cheng Cheng & Zhen Wang & Cheng Yan, 2021. "Spillover and dynamic effects of energy transition and economic growth on carbon dioxide emissions for the European Union: A dynamic spatial panel model," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 228-242, January.
    18. Eleftherios Thalassinos & Marta Kadłubek & Le Minh Thong & Tran Van Hiep & Erginbay Ugurlu, 2022. "Managerial Issues Regarding the Role of Natural Gas in the Transition of Energy and the Impact of Natural Gas Consumption on the GDP of Selected Countries," Resources, MDPI, vol. 11(5), pages 1-22, April.
    19. Sebri, Maamar, 2015. "Use renewables to be cleaner: Meta-analysis of the renewable energy consumption–economic growth nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 657-665.
    20. Md. Hasanur Rahman & Liton Chandra Voumik & Md. Jamsedul Islam & Md. Abdul Halim & Miguel Angel Esquivias, 2022. "Economic Growth, Energy Mix, and Tourism-Induced EKC Hypothesis: Evidence from Top Ten Tourist Destinations," Sustainability, MDPI, vol. 14(24), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0256542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.