IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v194y2022icp1184-1191.html
   My bibliography  Save this article

Renewables and institutional quality mitigate environmental degradation in Somalia

Author

Listed:
  • Warsame, Abdimalik Ali
  • Sheik-Ali, Ibrahim Abdukadir
  • Mohamed, Jama
  • Sarkodie, Samuel Asumadu

Abstract

Mitigating environmental degradation is a global target for every nation amidst its negative consequences on health, economy, and society. However, little is known about factors associated with reducing environmental pollution in the least developed nations. More specifically, empirical studies on renewables-institutional quality-environmental degradation nexus in Somalia are completely limited in the existing literature. To fill this gap, we investigate the effect of renewables and institutional quality on environmental degradation in Somalia, using data spanning 1990 to 2017. The autoregressive distributed lag model (ARDL) and granger causality are applied to examine the relationships and causality between parameters of interest. The long-run results demonstrate that renewable energy and institutional quality enhance environmental quality. While growth in capital declines environmental degradation, population growth, and economic development hamper environmental quality. Besides, the granger causality indicates unidirectional causality from institutional quality to environmental degradation. However, no causality is observed from renewable energy to environmental degradation and vice versa. Our empirical assessment suggests good governance that improves institutional quality and energy policies, viz. enhancing the share of renewables in the energy mix.

Suggested Citation

  • Warsame, Abdimalik Ali & Sheik-Ali, Ibrahim Abdukadir & Mohamed, Jama & Sarkodie, Samuel Asumadu, 2022. "Renewables and institutional quality mitigate environmental degradation in Somalia," Renewable Energy, Elsevier, vol. 194(C), pages 1184-1191.
  • Handle: RePEc:eee:renene:v:194:y:2022:i:c:p:1184-1191
    DOI: 10.1016/j.renene.2022.05.109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122007601
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.05.109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Yulong & Wang, Zheng & Zhong, Zhangqi, 2019. "CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China," Renewable Energy, Elsevier, vol. 131(C), pages 208-216.
    2. Chien, Fengsheng & Hsu, Ching-Chi & Ozturk, Ilhan & Sharif, Arshian & Sadiq, Muhammad, 2022. "The role of renewable energy and urbanization towards greenhouse gas emission in top Asian countries: Evidence from advance panel estimations," Renewable Energy, Elsevier, vol. 186(C), pages 207-216.
    3. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    4. Bélaïd, Fateh & Youssef, Meriem, 2017. "Environmental degradation, renewable and non-renewable electricity consumption, and economic growth: Assessing the evidence from Algeria," Energy Policy, Elsevier, vol. 102(C), pages 277-287.
    5. Usama Al-Mulali & Ilhan Ozturk & Hooi Lean, 2015. "The influence of economic growth, urbanization, trade openness, financial development, and renewable energy on pollution in Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 621-644, October.
    6. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    7. Bekhet, Hussain Ali & Othman, Nor Salwati, 2018. "The role of renewable energy to validate dynamic interaction between CO2 emissions and GDP toward sustainable development in Malaysia," Energy Economics, Elsevier, vol. 72(C), pages 47-61.
    8. Culas, Richard J., 2007. "Deforestation and the environmental Kuznets curve: An institutional perspective," Ecological Economics, Elsevier, vol. 61(2-3), pages 429-437, March.
    9. Nguyen, Kim Hanh & Kakinaka, Makoto, 2019. "Renewable energy consumption, carbon emissions, and development stages: Some evidence from panel cointegration analysis," Renewable Energy, Elsevier, vol. 132(C), pages 1049-1057.
    10. Maralgua Och, 2017. "Empirical Investigation of the Environmental Kuznets Curve Hypothesis for Nitrous Oxide Emissions for Mongolia," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 117-128.
    11. Hayat Khan & Liu Weili & Itbar Khan & Sikeo Khamphengxay, 2021. "Renewable Energy Consumption, Trade Openness, and Environmental Degradation: A Panel Data Analysis of Developing and Developed Countries," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-13, March.
    12. Farhani, Sahbi & Shahbaz, Muhammad, 2014. "What role of renewable and non-renewable electricity consumption and output is needed to initially mitigate CO2 emissions in MENA region?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 80-90.
    13. Paramati, Sudharshan Reddy & Mo, Di & Gupta, Rakesh, 2017. "The effects of stock market growth and renewable energy use on CO2 emissions: Evidence from G20 countries," Energy Economics, Elsevier, vol. 66(C), pages 360-371.
    14. Shafiei, Sahar & Salim, Ruhul A., 2014. "Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis," Energy Policy, Elsevier, vol. 66(C), pages 547-556.
    15. Sharma, Susan Sunila, 2011. "Determinants of carbon dioxide emissions: Empirical evidence from 69 countries," Applied Energy, Elsevier, vol. 88(1), pages 376-382, January.
    16. Yandle, B. & Bhattarai, M. & Vijayaraghavan, M., 2004. "Environmental Kuznets Curves: a review of findings, methods, and policy implications. PERC Research study 02-1 update," IWMI Research Reports H044740, International Water Management Institute.
    17. Apergis, Nicholas & Ben Jebli, Mehdi & Ben Youssef, Slim, 2018. "Does renewable energy consumption and health expenditures decrease carbon dioxide emissions? Evidence for sub-Saharan Africa countries," Renewable Energy, Elsevier, vol. 127(C), pages 1011-1016.
    18. Lau, Lin-Sea & Choong, Chee-Keong & Eng, Yoke-Kee, 2014. "Carbon dioxide emission, institutional quality, and economic growth: Empirical evidence in Malaysia," Renewable Energy, Elsevier, vol. 68(C), pages 276-281.
    19. Muhammad Azam & Liu Liu & Najid Ahmad, 2021. "Impact of institutional quality on environment and energy consumption: evidence from developing world," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1646-1667, February.
    20. Abdimalik Ali Warsame, 2022. "The Impact of Urbanization on Energy Demand: An Empirical Evidence from Somalia," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 383-389.
    21. Usama Al-Mulali & Sakiru Solarin & Ilhan Ozturk, 2016. "Investigating the presence of the environmental Kuznets curve (EKC) hypothesis in Kenya: an autoregressive distributed lag (ARDL) approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1729-1747, February.
    22. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    23. Usman, Ojonugwa & Alola, Andrew Adewale & Sarkodie, Samuel Asumadu, 2020. "Assessment of the role of renewable energy consumption and trade policy on environmental degradation using innovation accounting: Evidence from the US," Renewable Energy, Elsevier, vol. 150(C), pages 266-277.
    24. Apergis, Nicholas & Payne, James E. & Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth," Ecological Economics, Elsevier, vol. 69(11), pages 2255-2260, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zakarie Abdi Warsame & Maria Mohamed Ali & Liban Bile Mohamed & Farhia Hassan Mohamed, 2023. "The Causal Relation between Energy Consumption, Carbon Dioxide Emissions, and Macroeconomic Variables in Somalia," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 102-110, May.
    2. Hassan Abdikadir Hussein & Abdimalik Ali Warsame, 2023. "Testing Environmental Kuznets Curve Hypothesis in Somalia: Empirical Evidence from ARDL Technique," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 678-684, September.
    3. Hassan Abdikadir Hussein & Abdimalik Ali Warsame & Galad Mohamed Barre & Mohamed Ahmed Salad, 2023. "The Nexus between Economic Growth, Energy Consumption, and Environmental Degradation in Kenya," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 220-226, November.
    4. Iqra Hassan Mohamud & Ahmed Abdirashid Mohamud, 2023. "The Impact of Renewable Energy Consumption and Economic Growth on Environmental Degradation in Somalia," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 533-543, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zafar, Muhammad Wasif & Zaidi, Syed Anees Haider & Sinha, Avik & Gedikli, Ayfer & Hou, Fujun, 2019. "The role of stock market and banking sector development, and renewable energy consumption in carbon emissions: Insights from G-7 and N-11 countries," Resources Policy, Elsevier, vol. 62(C), pages 427-436.
    2. Danish & Recep Ulucak, 2020. "The pathway toward pollution mitigation: Does institutional quality make a difference?," Business Strategy and the Environment, Wiley Blackwell, vol. 29(8), pages 3571-3583, December.
    3. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    4. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2022. "Renewable energy and CO2 emissions: New evidence with the panel threshold model," Renewable Energy, Elsevier, vol. 194(C), pages 117-128.
    5. Anh The Vo & Duc Hong Vo & Quan Thai-Thuong Le, 2019. "CO 2 Emissions, Energy Consumption, and Economic Growth: New Evidence in the ASEAN Countries," JRFM, MDPI, vol. 12(3), pages 1-20, September.
    6. Mumin Atalay Cetin & Ibrahim Bakirtas, 2020. "The long-run environmental impacts of economic growth, financial development, and energy consumption: Evidence from emerging markets," Energy & Environment, , vol. 31(4), pages 634-655, June.
    7. Muchran Muchran & Arifin Idrus & Syamsiah Badruddin & Mariana Tenreng & Muklis Kanto, 2021. "Influence of the Renewable and Non-Renewable Energy Consumptions and Real-Income on Environmental Degradation in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 599-606.
    8. Karaaslan, Abdulkerim & Çamkaya, Serhat, 2022. "The relationship between CO2 emissions, economic growth, health expenditure, and renewable and non-renewable energy consumption: Empirical evidence from Turkey," Renewable Energy, Elsevier, vol. 190(C), pages 457-466.
    9. Squalli, Jay, 2017. "Renewable energy, coal as a baseload power source, and greenhouse gas emissions: Evidence from U.S. state-level data," Energy, Elsevier, vol. 127(C), pages 479-488.
    10. Amri, Fethi & Zaied, Younes Ben & Lahouel, Bechir Ben, 2019. "ICT, total factor productivity, and carbon dioxide emissions in Tunisia," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 212-217.
    11. Sharif, Arshian & Mishra, Shekhar & Sinha, Avik & Jiao, Zhilun & Shahbaz, Muhammad & Afshan, Sahar, 2020. "The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach," Renewable Energy, Elsevier, vol. 150(C), pages 670-690.
    12. MARINESCU Ștefana & MAHDAVIAN Seyed Mohammadreza & RĂDULESCU Magdalena, 2022. "Globalization, Energy Mix, Renewable Energy, and Emission: Romanian Case," European Journal of Interdisciplinary Studies, Bucharest Economic Academy, issue 02, June.
    13. Ulucak, Recep & Danish, & Ozcan, Burcu, 2020. "Relationship between energy consumption and environmental sustainability in OECD countries: The role of natural resources rents," Resources Policy, Elsevier, vol. 69(C).
    14. Misbah Sadiq & Desti Kannaiah & Ghulam Yahya Khan & Malik Shahzad Shabbir & Kanwal Bilal & Aysha Zamir, 2023. "Does sustainable environmental agenda matter? The role of globalization toward energy consumption, economic growth, and carbon dioxide emissions in South Asian countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 76-95, January.
    15. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    16. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    17. Daiva Makutėnienė & Algirdas Justinas Staugaitis & Valdemaras Makutėnas & Dalia Juočiūnienė & Yuriy Bilan, 2022. "An Empirical Investigation into Greenhouse Gas Emissions and Agricultural Economic Performance in Baltic Countries: A Non-Linear Framework," Agriculture, MDPI, vol. 12(9), pages 1-22, August.
    18. Vural, Gulfer, 2020. "How do output, trade, renewable energy and non-renewable energy impact carbon emissions in selected Sub-Saharan African Countries?," Resources Policy, Elsevier, vol. 69(C).
    19. Jaforullah, Mohammad & King, Alan, 2017. "The econometric consequences of an energy consumption variable in a model of CO2 emissions," Energy Economics, Elsevier, vol. 63(C), pages 84-91.
    20. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:194:y:2022:i:c:p:1184-1191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.