IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0151670.html
   My bibliography  Save this article

The Formation of Social Conventions in Real-Time Environments

Author

Listed:
  • Robert X D Hawkins
  • Robert L Goldstone

Abstract

Why are some behaviors governed by strong social conventions while others are not? We experimentally investigate two factors contributing to the formation of conventions in a game of impure coordination: the continuity of interaction within each round of play (simultaneous vs. real-time) and the stakes of the interaction (high vs. low differences between payoffs). To maximize efficiency and fairness in this game, players must coordinate on one of two equally advantageous equilibria. In agreement with other studies manipulating continuity of interaction, we find that players who were allowed to interact continuously within rounds achieved outcomes with greater efficiency and fairness than players who were forced to make simultaneous decisions. However, the stability of equilibria in the real-time condition varied systematically and dramatically with stakes: players converged on more stable patterns of behavior when stakes are high. To account for this result, we present a novel analysis of the dynamics of continuous interaction and signaling within rounds. We discuss this previously unconsidered interaction between within-trial and across-trial dynamics as a form of social canalization. When stakes are low in a real-time environment, players can satisfactorily coordinate ‘on the fly’, but when stakes are high there is increased pressure to establish and adhere to shared expectations that persist across rounds.

Suggested Citation

  • Robert X D Hawkins & Robert L Goldstone, 2016. "The Formation of Social Conventions in Real-Time Environments," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-14, March.
  • Handle: RePEc:plo:pone00:0151670
    DOI: 10.1371/journal.pone.0151670
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0151670
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0151670&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0151670?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sau-Him Lau & Vai-Lam Mui, 2008. "Using Turn Taking to Mitigate Coordination and Conflict Problems in the Repeated Battle of the Sexes Game," Theory and Decision, Springer, vol. 65(2), pages 153-183, September.
    2. Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ismael T Freire & Clement Moulin-Frier & Marti Sanchez-Fibla & Xerxes D Arsiwalla & Paul F M J Verschure, 2020. "Modeling the formation of social conventions from embodied real-time interactions," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-22, June.
    2. Anton M Unakafov & Thomas Schultze & Alexander Gail & Sebastian Moeller & Igor Kagan & Stephan Eule & Fred Wolf, 2020. "Emergence and suppression of cooperation by action visibility in transparent games," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-32, January.
    3. Jennifer A. Loughmiller-Cardinal & James Scott Cardinal, 2023. "The Behavior of Information: A Reconsideration of Social Norms," Societies, MDPI, vol. 13(5), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    2. Huo, Feizhou & Li, Chao & Li, Yufei & Lv, Wei & Ma, Yaping, 2022. "An extended model for describing pedestrian evacuation considering the impact of obstacles on the visual view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    3. Jie Xu & Yao Ning & Heng Wei & Wei Xie & Jianyuan Guo & Limin Jia & Yong Qin, 2015. "Route Choice in Subway Station during Morning Peak Hours: A Case of Guangzhou Subway," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-8, March.
    4. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    5. Lasse Pedersen, 2009. "When Everyone Runs for the Exit," International Journal of Central Banking, International Journal of Central Banking, vol. 5(4), pages 177-199, December.
    6. Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
    7. Sun, Lijun & Tirachini, Alejandro & Axhausen, Kay W. & Erath, Alexander & Lee, Der-Horng, 2014. "Models of bus boarding and alighting dynamics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 447-460.
    8. Dirk Helbing & Pratik Mukerji, "undated". "Crowd Disasters as Systemic Failures: Analysis of the Love Parade Disaster," Working Papers ETH-RC-12-010, ETH Zurich, Chair of Systems Design.
    9. Shi, Zhigang & Zhang, Jun & Shang, Zhigang & Fan, Minghao & Song, Weiguo, 2022. "The effect of obstacle layouts on regulating luggage-laden pedestrian flow through bottlenecks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    10. Lian, Liping & Song, Weiguo & Yuen, Kwok Kit Richard & Telesca, Luciano, 2018. "Investigating the time evolution of some parameters describing inflow processes of pedestrians in a room," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 77-88.
    11. Hu, Yanghui & Bi, Yubo & Li, Hongliu & Gao, Wei & Zhang, Jun & Song, Weiguo, 2023. "An empirical study on the effect of an obstacle on the inflow process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    12. Tao, Y.Z. & Dong, L.Y., 2017. "A Cellular Automaton model for pedestrian counterflow with swapping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 155-168.
    13. Chich-Ping Hu, 2022. "The COVID-19 Epidemic Spreading Effects," Sustainability, MDPI, vol. 14(15), pages 1-11, August.
    14. Tjaša Bjedov & Thierry Madiès & Marie Claire Villeval, 2016. "Communication And Coordination In A Two-Stage Game," Economic Inquiry, Western Economic Association International, vol. 54(3), pages 1519-1540, July.
    15. Hu, Yanghui & Zhang, Jun & Song, Weiguo, 2019. "Experimental study on the movement strategies of individuals in multidirectional flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    16. Ju-Sung Lee & Tatiana Filatova & Arika Ligmann-Zielinska & Behrooz Hassani-Mahmooei & Forrest Stonedahl & Iris Lorscheid & Alexey Voinov & J. Gareth Polhill & Zhanli Sun & Dawn C. Parker, 2015. "The Complexities of Agent-Based Modeling Output Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-4.
    17. Rangel-Huerta, A. & Muñoz-Meléndez, A., 2010. "Kinetic theory of situated agents applied to pedestrian flow in a corridor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(5), pages 1077-1089.
    18. John Duffy & Ernest K. Lai & Wooyoung Lim, 2017. "Coordination via correlation: an experimental study," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 64(2), pages 265-304, August.
    19. Flötteröd, Gunnar & Lämmel, Gregor, 2015. "Bidirectional pedestrian fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 194-212.
    20. Saberi, Meead & Aghabayk, Kayvan & Sobhani, Amir, 2015. "Spatial fluctuations of pedestrian velocities in bidirectional streams: Exploring the effects of self-organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 120-128.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0151670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.