IDEAS home Printed from https://ideas.repec.org/a/oup/ajagec/v98y2016i4p1210-1229..html
   My bibliography  Save this article

Contributions of Productivity and Relative Price Changes to Farm-level Profitability Change

Author

Listed:
  • Amin W. Mugera
  • Michael R. Langemeier
  • Andrew Ojede

Abstract

This article investigates the sources of profitability change at the farm level, by farm size and specialization, with an application to a sample of 256 farms in Kansas from 1993 to 2010. Using the Lowe index method, profitability change is decomposed into changes in total factor productivity and terms of trade. The nonparametric data envelopment analysis method is used to further decompose total factor productivity into technical change and different measures of output-oriented efficiency change. Finally, the system-Generalized Methods of Moments approach is employed to investigate the dynamic relationship between different components of productivity on farm profitability. Results indicate that profitability change is mainly driven by total factor productivity change. The main source of total factor productivity change is technical change. The upward-shifting frontier results in declining technical efficiency. Results point towards the need to support research and development without ignoring efforts to encourage the uptake of existing technologies.

Suggested Citation

  • Amin W. Mugera & Michael R. Langemeier & Andrew Ojede, 2016. "Contributions of Productivity and Relative Price Changes to Farm-level Profitability Change," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(4), pages 1210-1229.
  • Handle: RePEc:oup:ajagec:v:98:y:2016:i:4:p:1210-1229.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ajae/aaw029
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. QI Li & Desheng Ouyang & Jeffrey S. Racine, 2013. "Categorical semiparametric varying‐coefficient models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(4), pages 551-579, June.
    2. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    3. Amin Mugera & Michael Langemeier & Allen Featherstone, 2012. "Labor productivity convergence in the Kansas farm sector: a three-stage procedure using data envelopment analysis and semiparametric regression analysis," Journal of Productivity Analysis, Springer, vol. 38(1), pages 63-79, August.
    4. Yeager, Elizabeth A. & Langemeier, Michael R., 2011. "Productivity Divergence across Kansas Farms," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 40(2), pages 1-11, August.
    5. Mugera, Amin W. & Langemeier, Michael R. & Featherstone, Allen M., 2012. "Labor Productivity Growth in the Kansas Farm Sector: A Tripartite Decomposition Using a Non-Parametric Approach," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 41(3), pages 1-15, December.
    6. Mugera, Amin W. & Langemeier, Michael R., 2011. "Does Farm Size and Specialization Matter for Productive Efficiency? Results from Kansas," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 43(4), pages 515-528, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rezitis, Anthony & Mishra, Ashok & Kumar, Shalander, . "Indians Demanding More Plant-Based Protein but Farmers' Profits Drop: Empirical Evidence to Understand the Dilemma," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 49(1).
    2. Sawadgo, Wendiam P. M. & Plastina, Alejandro, 2020. "Drivers of Profit Inefficiency in Iowa Crop Production," ISU General Staff Papers 202001010800001056, Iowa State University, Department of Economics.
    3. Qinan Lu & Xiaodong Du & Huanguang Qiu, 2022. "Adoption patterns and productivity impacts of agricultural mechanization services," Agricultural Economics, International Association of Agricultural Economists, vol. 53(5), pages 826-845, September.
    4. Philippe Jeanneaux & Yann Desjeux & Geoffroy Enjolras & Laure Latruffe, 2022. "Farm valuation: A comparison of methods for French farms," Agribusiness, John Wiley & Sons, Ltd., vol. 38(4), pages 786-809, October.
    5. Kryszak, Łukasz & Herzfeld, Thomas, 2021. "One or many European models of agriculture? How heterogeneity influences income creation among farms in the European Union," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 67(11), pages 445-456.
    6. Ahmad, Shabbir & Shankar, Sriram & Steen, John & Verreynne, Martie-Louise & Burki, Abid Aman, 2021. "Using measures of efficiency for regionally-targeted smallholder policy intervention: The case of Pakistan’s horticulture sector," Land Use Policy, Elsevier, vol. 101(C).
    7. Boehlje, Michael & Langemeier, Michael, 2022. "Potential Payoffs of Precision Agriculture," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2022.
    8. Stefan Wimmer & Johannes Sauer, 2020. "Profitability Development and Resource Reallocation: The Case of Sugar Beet Farming in Germany," Journal of Agricultural Economics, Wiley Blackwell, vol. 71(3), pages 816-837, September.
    9. Łukasz Kryszak & Marta Guth & Bazyli Czyżewski, 2021. "Determinants of farm profitability in the EU regions. Does farm size matter?," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 67(3), pages 90-100.
    10. S. C. West & A. W. Mugera & R. S. Kingwell, 2022. "The choice of efficiency benchmarking metric in evaluating firm productivity and viability," Journal of Productivity Analysis, Springer, vol. 57(2), pages 193-211, April.
    11. Zhihao Zheng & Shen Cheng & Shida R. Henneberry, 2023. "Total factor productivity change in China's grain production sector: 1980–2018," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(1), pages 38-55, January.
    12. Stefan Wimmer & K Hervé Dakpo, 2023. "Components of agricultural productivity change: Replication of US evidence and extension to the EU," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(3), pages 1332-1355, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomas Baležentis, 2014. "Total factor productivity in the Lithuanian family farms after accession to the EU: application of the bias-corrected Malmquist indices," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 41(4), pages 731-746, November.
    2. Dakpo, K Hervé & Desjeux, Yann & Jeanneaux, Philippe & Latruffe, Laure, 2016. "Productivity, efficiency and technological change in French agriculture during 2002-2014: A Färe-Primont index decomposition," 149th Seminar, October 27-28, 2016, Rennes, France 244793, European Association of Agricultural Economists.
    3. Sawadgo, Wendiam PM & Plastina, Alejandro, 2020. "Drivers of Profit Inefficiency in Iowa Crop Production," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304356, Agricultural and Applied Economics Association.
    4. Tomas Baležentis & Irena Kriščiukaitienė & Alvydas Baležentis, 2014. "A nonparametric analysis of the determinants of family farm efficiency dynamics in Lithuania," Agricultural Economics, International Association of Agricultural Economists, vol. 45(5), pages 589-599, September.
    5. K Hervé Dakpo & Yann Desjeux & Philippe Jeanneaux & Laure Latruffe, 2017. "Productivity, technical efficiency and technological change in French agriculture during 2002-2014: A Färe-Primont index decomposition," Working Papers SMART 17-07, INRAE UMR SMART.
    6. S. C. West & A. W. Mugera & R. S. Kingwell, 2022. "The choice of efficiency benchmarking metric in evaluating firm productivity and viability," Journal of Productivity Analysis, Springer, vol. 57(2), pages 193-211, April.
    7. Santos, João & Domingos, Tiago & Sousa, Tânia & St. Aubyn, Miguel, 2016. "Does a small cost share reflect a negligible role for energy in economic production? Testing for aggregate production functions including capital, labor, and useful exergy through a cointegration-base," MPRA Paper 70850, University Library of Munich, Germany.
    8. Jan Kluge & Sarah Lappöhn & Kerstin Plank, 2023. "Predictors of TFP growth in European countries," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 50(1), pages 109-140, February.
    9. Noel Uri, 2001. "Telecommunications in the United States and Changing Productive Efficiency," Journal of Industry, Competition and Trade, Springer, vol. 1(3), pages 321-335, September.
    10. Epure, Mircea & Kerstens, Kristiaan & Prior, Diego, 2011. "Technology-based total factor productivity and benchmarking: New proposals and an application," Omega, Elsevier, vol. 39(6), pages 608-619, December.
    11. Roy Allen & John Rehbeck, 2019. "Assessing Misspecification and Aggregation for Structured Preferences," University of Western Ontario, Departmental Research Report Series 20194, University of Western Ontario, Department of Economics.
    12. Zaim, Osman & Uygurtürk Gazel, Tuğçe & Akkemik, K. Ali, 2017. "Measuring energy intensity in Japan: A new method," European Journal of Operational Research, Elsevier, vol. 258(2), pages 778-789.
    13. Suhyeon Han & Shinyoung Park & Sejin An & Wonjun Choi & Mina Lee, 2023. "Research on Analyzing the Efficiency of R&D Projects for Climate Change Response Using DEA–Malmquist," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    14. Barnabé Walheer, 2021. "A directional technology convergence index," Economics Bulletin, AccessEcon, vol. 41(3), pages 1330-1337.
    15. Redding, Stephen J. & Weinstein, David E., 2016. "A unified approach to estimating demand and welfare," LSE Research Online Documents on Economics 67681, London School of Economics and Political Science, LSE Library.
    16. Andrew B. Bernard & J. Bradford Jensen & Stephen J. Redding & Peter K. Schott, 2018. "Global Firms," Journal of Economic Literature, American Economic Association, vol. 56(2), pages 565-619, June.
    17. Esteban Lafuente & Jasmina Berbegal-Mirabent, 2019. "Assessing the productivity of technology transfer offices: an analysis of the relevance of aspiration performance and portfolio complexity," The Journal of Technology Transfer, Springer, vol. 44(3), pages 778-801, June.
    18. Fernández de Guevara, Juan & Maudos, Joaquín & Salvador, Carlos, 2021. "Effects of the degree of financial constraint and excessive indebtedness on firms’ investment decisions," Journal of International Money and Finance, Elsevier, vol. 110(C).
    19. R, Sendhil & P, Ramasundaram & P, Anbukkani & Singh, Randhir & Sharma, Indu, 2015. "Trends and Determinants of Research Driven Total Factor Productivity in Indian Wheat," 2015 Conference, August 9-14, 2015, Milan, Italy 212491, International Association of Agricultural Economists.
    20. Diewert, W. Erwin & Fox, Kevin J., 2014. "Reference technology sets, Free Disposal Hulls and productivity decompositions," Economics Letters, Elsevier, vol. 122(2), pages 238-242.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ajagec:v:98:y:2016:i:4:p:1210-1229.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.