IDEAS home Printed from https://ideas.repec.org/a/ags/jasfmr/322714.html
   My bibliography  Save this article

Potential Payoffs of Precision Agriculture

Author

Listed:
  • Boehlje, Michael
  • Langemeier, Michael

Abstract

No abstract is available for this item.

Suggested Citation

  • Boehlje, Michael & Langemeier, Michael, 2022. "Potential Payoffs of Precision Agriculture," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2022.
  • Handle: RePEc:ags:jasfmr:322714
    DOI: 10.22004/ag.econ.322714
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/322714/files/2022_PrecisionAgriculture.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.322714?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amin W. Mugera & Michael R. Langemeier & Andrew Ojede, 2016. "Contributions of Productivity and Relative Price Changes to Farm-level Profitability Change," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(4), pages 1210-1229.
    2. Schimmelpfennig, David, 2018. "Crop Production Costs, Profits, And Ecosystem Stewardship With Precision Agriculture," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 50(1), pages 81-103, February.
    3. Lowenberg-DeBoer, James & Behrendt, Karl & Godwin, Richard & Franklin, Kit, 2019. "The impact of swarm robotics on arable farm size and structure in the UK," Land, Farm & Agribusiness Management Department 296492, Harper Adams University, Land, Farm & Agribusiness Management Department.
    4. Lowenberg-DeBoer, James & Behrendt, Karl & Godwin, Richard & Franklin, Kit, 2019. "The impact of swarm robotics on arable farm size and structure in the UK," Agri-Tech Economics Papers 296492, Harper Adams University, Land, Farm & Agribusiness Management Department.
    5. Schimmelpfennig, David, 2016. "Farm Profits and Adoption of Precision Agriculture," Economic Research Report 249773, United States Department of Agriculture, Economic Research Service.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scott M. Swinton, 2022. "Precision conservation: Linking set‐aside and working lands policy," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(3), pages 1158-1167, September.
    2. Wang, Tong & Jin, Hailong & Sieverding, Heidi L. & Rao, Xudong & Miao, Yuxin & Kumar, Sandeep & Redfearn, Daren & Nafchi, Ali, 2022. "Understanding farmer perceptions of precision agriculture profitability in the U.S. Midwest," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322502, Agricultural and Applied Economics Association.
    3. Julian M. Alston & Philip G. Pardey, 2020. "Innovation, Growth, and Structural Change in American Agriculture," NBER Chapters, in: The Role of Innovation and Entrepreneurship in Economic Growth, pages 123-165, National Bureau of Economic Research, Inc.
    4. McFadden, Jonathan & Njuki, Eric & Griffin, Terry, 2023. "Precision Agriculture in the Digital Era: Recent Adoption on U.S. Farms," USDA Miscellaneous 333550, United States Department of Agriculture.
    5. Stefania Troiano & Matteo Carzedda & Francesco Marangon, 2023. "Better richer than environmentally friendly? Describing preferences toward and factors affecting precision agriculture adoption in Italy," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 11(1), pages 1-15, December.
    6. Lowenberg-DeBoer, James & Pope, Tom William & Roberts, Joe Mark, 2020. "Feasibility of Autonomous Equipment for Biopesticide Application," Agri-Tech Economics Papers 308162, Harper Adams University, Land, Farm & Agribusiness Management Department.
    7. Schimmelpfennig, David & Lowenberg-DeBoer, James, 2020. "Farm types and precision agriculture adoption: crops, regions, soil variability, and farm size," Agri-Tech Economics Papers 304070, Harper Adams University, Land, Farm & Agribusiness Management Department.
    8. Wang, Tong & Jin, Hailong & Sieverding, Heidi & Kumar, Sandeep & Miao, Yuxin & Rao, Xudong & Obembe, Oladipo & Mirzakhani Nafchi, Ali & Redfearn, Daren & Cheye, Stephen, 2023. "Understanding farmer views of precision agriculture profitability in the U.S. Midwest," Ecological Economics, Elsevier, vol. 213(C).
    9. Silvia Macchia, 2022. "Unbundling the information needs of new-generation agricultural companies," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2 Suppl.), pages 117-141.
    10. Lowenberg-DeBoer, James & Pope, Tom William & Roberts, Joe Mark, 2020. "Feasibility of Autonomous Equipment for Biopesticide Application," Land, Farm & Agribusiness Management Department 308162, Harper Adams University, Land, Farm & Agribusiness Management Department.
    11. Revell, G.B. & Powell, J.W. & Welsh, J.M., 2020. "Economic Potential of Autonomous Tractor Technology in Australian Cotton Production Systems," AFBM Journal, Australasian Farm Business Management Network, vol. 17(1), October.
    12. LoPiccalo, Katherine, 2022. "Impact of broadband penetration on U.S. Farm productivity: A panel approach," Telecommunications Policy, Elsevier, vol. 46(9).
    13. Dobre, Iuliana & Capra, Marius & Costache, Cristiana Adriana & Dorobantu, Nicoleta Alexandra, 2021. "Farm Size and Digitalization: Quantitative Approach," Western Balkan Journal of Agricultural Economics and Rural Development (WBJAERD), Institute of Agricultural Economics, vol. 3(1), June.
    14. Queiroz, Pedro W. V. & Perrin, Richard K. & Fulginiti, Lilyan E. & Bullock, David S., 2023. "An Expected Value of Sample Information (EVSI) Approach for Estimating the Payoff from a Variable Rate Technology," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 48(1), January.
    15. Nathan D. DeLay & Nathanael M. Thompson & James R. Mintert, 2022. "Precision agriculture technology adoption and technical efficiency," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 195-219, February.
    16. Madhu Khanna, 2021. "Digital Transformation of the Agricultural Sector: Pathways, Drivers and Policy Implications," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(4), pages 1221-1242, December.
    17. Jaroslav Vrchota & Martin Pech & Ivona Švepešová, 2022. "Precision Agriculture Technologies for Crop and Livestock Production in the Czech Republic," Agriculture, MDPI, vol. 12(8), pages 1-18, July.
    18. Mohammad Amiri-Zarandi & Mehdi Hazrati Fard & Samira Yousefinaghani & Mitra Kaviani & Rozita Dara, 2022. "A Platform Approach to Smart Farm Information Processing," Agriculture, MDPI, vol. 12(6), pages 1-18, June.
    19. Khanna, Madhu, 2021. "Digital Transformation for a Sustainable Agriculture: Opportunities and Challenges," 2021 Conference, August 17-31, 2021, Virtual 315052, International Association of Agricultural Economists.
    20. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," Economic Information Bulletin 327359, United States Department of Agriculture, Economic Research Service.

    More about this item

    Keywords

    Agricultural Finance;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:jasfmr:322714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/asfmrea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.