IDEAS home Printed from https://ideas.repec.org/a/now/fnteco/0800000039.html
   My bibliography  Save this article

Factor Extraction in Dynamic Factor Models: Kalman Filter Versus Principal Components

Author

Listed:
  • Esther Ruiz
  • Pilar Poncela

Abstract

This survey looks at the literature on factor extraction in the context of Dynamic Factor Models (DFMs) fitted to multivariate systems of economic and financial variables. Many of the most popular factor extraction procedures often used in empirical applications are based on either Principal Components (PC) or Kalman filter and smoothing (KFS) techniques. First, we show that the KFS factors are a weighted average of the contemporaneous information (PC factors) and the past information and that the weights of the latter are negligible unless the factors are close to the non-stationarity boundary and/or their loadings are pretty small when compared with the variance-covariance matrix of the idiosyncratic components. Note that the weight of the past can be large either because the cross-sectional dimension is small or because the magnitude of the factor loadings is small. Consequently, we are able to explain why, in practice, there is a general consensus about PC and KFS factors being rather similar when extracted from stationary systems of large dimensions. Second, we survey how PC and KFS deal with several issues often faced in the context of extracting factors from real data systems. In particular, we describe PC and KFS procedures to deal with mixed frequencies and missing observations, structural breaks, nonstationarity, Markov-switching parameters or multi-level factor structures. In general, we see that KFS is very flexible to deal with these issues.

Suggested Citation

  • Esther Ruiz & Pilar Poncela, 2022. "Factor Extraction in Dynamic Factor Models: Kalman Filter Versus Principal Components," Foundations and Trends(R) in Econometrics, now publishers, vol. 12(2), pages 121-231, November.
  • Handle: RePEc:now:fnteco:0800000039
    DOI: 10.1561/0800000039
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1561/0800000039
    Download Restriction: no

    File URL: https://libkey.io/10.1561/0800000039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Rongmao & Robinson, Peter & Yao, Qiwei, 2019. "Identifying cointegration by eigenanalysis," LSE Research Online Documents on Economics 87431, London School of Economics and Political Science, LSE Library.
    2. Leif Anders Thorsrud, 2020. "Words are the New Numbers: A Newsy Coincident Index of the Business Cycle," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 393-409, April.
    3. Wu, Jianhong, 2016. "Robust determination for the number of common factors in the approximate factor models," Economics Letters, Elsevier, vol. 144(C), pages 102-106.
    4. Yohei Yamamoto, 2016. "Forecasting With Nonspurious Factors in U.S. Macroeconomic Time Series," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 81-106, January.
    5. Yi‐Chiuan Wang & Jyh‐Lin Wu, 2015. "Fundamentals and Exchange Rate Prediction Revisited," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(8), pages 1651-1671, December.
    6. Wang, Dong & Liu, Xialu & Chen, Rong, 2019. "Factor models for matrix-valued high-dimensional time series," Journal of Econometrics, Elsevier, vol. 208(1), pages 231-248.
    7. Tsai, Henghsiu & Tsay, Ruey S., 2010. "Constrained Factor Models," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1593-1605.
    8. Su, Liangjun & Wang, Xia, 2017. "On time-varying factor models: Estimation and testing," Journal of Econometrics, Elsevier, vol. 198(1), pages 84-101.
    9. Wang, Fa, 2022. "Maximum likelihood estimation and inference for high dimensional generalized factor models with application to factor-augmented regressions," Journal of Econometrics, Elsevier, vol. 229(1), pages 180-200.
    10. Westerlund, Joakim & Urbain, Jean-Pierre, 2013. "On the estimation and inference in factor-augmented panel regressions with correlated loadings," Economics Letters, Elsevier, vol. 119(3), pages 247-250.
    11. West, Kenneth D. & Wong, Ka-Fu, 2014. "A factor model for co-movements of commodity prices," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 289-309.
    12. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    13. Wei, Jie & Chen, Hui, 2020. "Determining the number of factors in approximate factor models by twice K-fold cross validation," Economics Letters, Elsevier, vol. 191(C).
    14. Watson, Mark W. & Engle, Robert F., 1983. "Alternative algorithms for the estimation of dynamic factor, mimic and varying coefficient regression models," Journal of Econometrics, Elsevier, vol. 23(3), pages 385-400, December.
    15. Rongmao Zhang & Peter Robinson & Qiwei Yao, 2019. "Identifying Cointegration by Eigenanalysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 916-927, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Barigozzi, 2023. "Asymptotic equivalence of Principal Components and Quasi Maximum Likelihood estimators in Large Approximate Factor Models," Papers 2307.09864, arXiv.org, revised Sep 2023.
    2. Juan, Aranzazu de & Poncela, Maria Pilar & Ruiz Ortega, Esther, 2023. "Economic activity and C02 emissions in Spain," DES - Working Papers. Statistics and Econometrics. WS 37975, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Jad Beyhum & Jonas Striaukas, 2023. "Sparse plus dense MIDAS regressions and nowcasting during the COVID pandemic," Papers 2306.13362, arXiv.org, revised Dec 2023.
    4. Philipp Gersing & Christoph Rust & Manfred Deistler, 2023. "Weak Factors are Everywhere," Papers 2307.10067, arXiv.org, revised Jan 2024.
    5. Fresoli, Diego & Poncela, Pilar & Ruiz, Esther, 2023. "Ignoring cross-correlated idiosyncratic components when extracting factors in dynamic factor models," Economics Letters, Elsevier, vol. 230(C).
    6. Matteo Barigozzi, 2023. "Quasi Maximum Likelihood Estimation of High-Dimensional Factor Models: A Critical Review," Papers 2303.11777, arXiv.org, revised Dec 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
    2. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    3. Gianluca Cubadda & Alain Hecq, 2022. "Dimension Reduction for High‐Dimensional Vector Autoregressive Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(5), pages 1123-1152, October.
    4. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    5. Gianluca Cubadda & Marco Mazzali, 2023. "The Vector Error Correction Index Model: Representation, Estimation and Identification," CEIS Research Paper 556, Tor Vergata University, CEIS, revised 04 Apr 2023.
    6. Gianluca Cubadda & Alain Hecq, 2020. "Dimension Reduction for High Dimensional Vector Autoregressive Models," Papers 2009.03361, arXiv.org, revised Feb 2022.
    7. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
    8. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
    9. Christian Leschinski & Michelle Voges & Philipp Sibbertsen, 2021. "A comparison of semiparametric tests for fractional cointegration," Statistical Papers, Springer, vol. 62(4), pages 1997-2030, August.
    10. Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022. "On LASSO for predictive regression," Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
    11. Zhaoxing Gao & Ruey S. Tsay, 2020. "Modeling High-Dimensional Unit-Root Time Series," Papers 2005.03496, arXiv.org, revised Aug 2020.
    12. Jushan Bai & Kunpeng Li & Lina Lu, 2016. "Estimation and Inference of FAVAR Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 620-641, October.
    13. Ziwei Mei & Zhentao Shi, 2022. "On LASSO for High Dimensional Predictive Regression," Papers 2212.07052, arXiv.org, revised Jan 2024.
    14. Yohei Yamamoto & Naoko Hara, 2022. "Identifying factor‐augmented vector autoregression models via changes in shock variances," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 722-745, June.
    15. Smeekes, Stephan & Wijler, Etienne, 2021. "An automated approach towards sparse single-equation cointegration modelling," Journal of Econometrics, Elsevier, vol. 221(1), pages 247-276.
    16. Bai, Jushan, 2013. "Likelihood approach to dynamic panel models with interactive effects," MPRA Paper 50267, University Library of Munich, Germany.
    17. Hugo Freeman & Martin Weidner, 2021. "Linear panel regressions with two-way unobserved heterogeneity," CeMMAP working papers CWP39/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Vegard H�ghaug Larsen & Leif Anders Thorsrud, 2018. "Business cycle narratives," Working Papers No 6/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    19. Bai, Jushan & Liao, Yuan, 2017. "Inferences in panel data with interactive effects using large covariance matrices," Journal of Econometrics, Elsevier, vol. 200(1), pages 59-78.
    20. Jin, Sainan & Miao, Ke & Su, Liangjun, 2021. "On factor models with random missing: EM estimation, inference, and cross validation," Journal of Econometrics, Elsevier, vol. 222(1), pages 745-777.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:now:fnteco:0800000039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lucy Wiseman (email available below). General contact details of provider: http://www.nowpublishers.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.