IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v448y2007i7157d10.1038_nature06045.html
   My bibliography  Save this article

Projected increase in continental runoff due to plant responses to increasing carbon dioxide

Author

Listed:
  • Richard A. Betts

    (Met Office Hadley Centre, Fitzroy Road, Exeter EX1 3PB, UK)

  • Olivier Boucher

    (Met Office Hadley Centre, Fitzroy Road, Exeter EX1 3PB, UK)

  • Matthew Collins

    (Met Office Hadley Centre, Fitzroy Road, Exeter EX1 3PB, UK)

  • Peter M. Cox

    (Met Office Hadley Centre, Fitzroy Road, Exeter EX1 3PB, UK
    School of Engineering, Computing and Mathematics, Exeter University)

  • Peter D. Falloon

    (Met Office Hadley Centre, Fitzroy Road, Exeter EX1 3PB, UK)

  • Nicola Gedney

    (Met Office, Joint Centre for Hydro-Meteorological Research)

  • Deborah L. Hemming

    (Met Office Hadley Centre, Fitzroy Road, Exeter EX1 3PB, UK)

  • Chris Huntingford

    (Centre for Ecology and Hydrology, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, UK)

  • Chris D. Jones

    (Met Office Hadley Centre, Fitzroy Road, Exeter EX1 3PB, UK)

  • David M. H. Sexton

    (Met Office Hadley Centre, Fitzroy Road, Exeter EX1 3PB, UK)

  • Mark J. Webb

    (Met Office Hadley Centre, Fitzroy Road, Exeter EX1 3PB, UK)

Abstract

Watering the plants An assessment of the contribution of plant physiological effects to future changes in continental water runoff suggests that flooding risk under future global warming scenarios may be greater than was assumed. The stomatal pores that allow CO2 to enter plants and water to escape open less widely when CO2 concentrations are high, reducing water loss from the plant and thus leaving more water at the land surface. This effect may have contributed to the increase in continental runoff observed during the twentieth century, but most predictions of future changes in runoff don't account for it. The concept of 'CO2 equivalent', widely used to compare the effects of greenhouse gases on climate, does not account for this effect, so it may need to be revisited in light of these findings.

Suggested Citation

  • Richard A. Betts & Olivier Boucher & Matthew Collins & Peter M. Cox & Peter D. Falloon & Nicola Gedney & Deborah L. Hemming & Chris Huntingford & Chris D. Jones & David M. H. Sexton & Mark J. Webb, 2007. "Projected increase in continental runoff due to plant responses to increasing carbon dioxide," Nature, Nature, vol. 448(7157), pages 1037-1041, August.
  • Handle: RePEc:nat:nature:v:448:y:2007:i:7157:d:10.1038_nature06045
    DOI: 10.1038/nature06045
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature06045
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature06045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    2. Steven Wade & Jemima Rance & Nick Reynard, 2013. "The UK Climate Change Risk Assessment 2012: Assessing the Impacts on Water Resources to Inform Policy Makers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(4), pages 1085-1109, March.
    3. Boulanger, Pierre & Jomini, Patrick & Zhang, Xiao-guang & Costa, Catherine & Osborne, Michelle, 2010. "The Common Agricultural Policy and the French, European and World Economies," Conference papers 332019, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    4. Solange Filoso & Maíra Ometto Bezerra & Katherine C B Weiss & Margaret A Palmer, 2017. "Impacts of forest restoration on water yield: A systematic review," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-26, August.
    5. Florent Noulèkoun & Asia Khamzina & Jesse B. Naab & Ni’matul Khasanah & Meine Van Noordwijk & John P. A. Lamers, 2018. "Climate Change Sensitivity of Multi-Species Afforestation in Semi-Arid Benin," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
    6. Xiuliang Yuan & Jie Bai, 2018. "Future Projected Changes in Local Evapotranspiration Coupled with Temperature and Precipitation Variation," Sustainability, MDPI, vol. 10(9), pages 1-14, September.
    7. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    8. Calzadilla, Alvaro & Zhu, Tingju & Rehdanz, Katrin & Tol, Richard S.J. & Ringler, Claudia, 2013. "Economywide impacts of climate change on agriculture in Sub-Saharan Africa," Ecological Economics, Elsevier, vol. 93(C), pages 150-165.
    9. Nechifor, Victor & Winning, Matthew, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," Conference papers 332837, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    10. Zbigniew Kundzewicz & Yukiko Hirabayashi & Shinjiro Kanae, 2010. "River Floods in the Changing Climate—Observations and Projections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2633-2646, September.
    11. Hao Xu & Xu Lian & Ingrid J. Slette & Hui Yang & Yuan Zhang & Anping Chen & Shilong Piao, 2022. "Rising ecosystem water demand exacerbates the lengthening of tropical dry seasons," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Patro, Epari Ritesh & De Michele, Carlo & Avanzi, Francesco, 2018. "Future perspectives of run-of-the-river hydropower and the impact of glaciers’ shrinkage: The case of Italian Alps," Applied Energy, Elsevier, vol. 231(C), pages 699-713.
    13. Wolf, Annett, 2011. "Estimating the potential impact of vegetation on the water cycle requires accurate soil water parameter estimation," Ecological Modelling, Elsevier, vol. 222(15), pages 2595-2605.
    14. Walaa Elnashar & Ahmed Elyamany, 2023. "Managing Risks of Climate Change on Irrigation Water in Arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2429-2446, May.
    15. Cho, Jaeil & Oki, Taikan & Yeh, Pat J.-F. & Kanae, Shinjiro & Kim, Wonsik, 2010. "The effect of estimated PAR uncertainties on the physiological processes of biosphere models," Ecological Modelling, Elsevier, vol. 221(12), pages 1575-1579.
    16. Jeong, Hanseok & Pittelkow, Cameron M. & Bhattarai, Rabin, 2019. "Simulated responses of tile-drained agricultural systems to recent changes in ambient atmospheric gradients," Agricultural Systems, Elsevier, vol. 168(C), pages 48-55.
    17. Yiping Wu & Shuguang Liu & Omar Abdul-Aziz, 2012. "Hydrological effects of the increased CO 2 and climate change in the Upper Mississippi River Basin using a modified SWAT," Climatic Change, Springer, vol. 110(3), pages 977-1003, February.
    18. Benjamin Kipkemboi Kogo & Lalit Kumar & Richard Koech, 2021. "Climate change and variability in Kenya: a review of impacts on agriculture and food security," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 23-43, January.
    19. John Riverson & Robert Coats & Mariza Costa-Cabral & Michael Dettinger & John Reuter & Goloka Sahoo & Geoffrey Schladow, 2013. "Modeling the transport of nutrients and sediment loads into Lake Tahoe under projected climatic changes," Climatic Change, Springer, vol. 116(1), pages 35-50, January.
    20. Katherine Dagon & Daniel P. Schrag, 2019. "Quantifying the effects of solar geoengineering on vegetation," Climatic Change, Springer, vol. 153(1), pages 235-251, March.
    21. Jahan Zeb Khan & Muhammad Zaheer, 2018. "Impacts Of Environmental Changeability And Human Activities On Hydrological Processes And Response ," Environmental Contaminants Reviews (ECR), Zibeline International Publishing, vol. 1(1), pages 13-17, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:448:y:2007:i:7157:d:10.1038_nature06045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.