IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35698-0.html
   My bibliography  Save this article

Illustrating new understanding of adsorbed water on silica for inducing tetrahedral cobalt(II) for propane dehydrogenation

Author

Listed:
  • Zijun Huang

    (Kunming University of Science and Technology
    Kunming University of Science and Technology
    The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province
    The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province)

  • Dedong He

    (Kunming University of Science and Technology
    Kunming University of Science and Technology
    The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province
    The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province)

  • Weihua Deng

    (Kunming University of Science and Technology
    Kunming University of Science and Technology
    The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province)

  • Guowu Jin

    (Kunming University of Science and Technology
    The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province
    The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province)

  • Ke Li

    (Kunming University of Science and Technology
    The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province
    The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province)

  • Yongming Luo

    (Kunming University of Science and Technology
    Kunming University of Science and Technology
    The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province
    The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province)

Abstract

Highly dispersed metal sites on the surface of silica, achieved from immobilization of metal precursor within hydroxyl groups, has gained increasing attention in the field of heterogeneous catalyst. However, the special role of adsorbed water derived by hydroxyl groups on the silica is generally ignored. Herein, a new understanding of adsorbed water on the formation of highly dispersed tetrahedral Co(II) (Td-cobalt(II)) sites is illustrated. It is indicated that sufficient adsorbed water induces the transformation of precursor of Co(NO3)2 into intermediate of [Co(H2O)6]2+. Subsequently, [Co(H2O)6]2+ makes the highly dispersed Td-cobalt(II) sites to be available during direct H2-reduction process. A systematic characterization and DFT calculation prove the existence of the adsorbed water and the importance of the intermediate of [Co(H2O)6]2+, respectively. The as-synthesized catalyst is attempted to the propane dehydrogenation, which shows better reactivity when compared with other reported Co based catalysts.

Suggested Citation

  • Zijun Huang & Dedong He & Weihua Deng & Guowu Jin & Ke Li & Yongming Luo, 2023. "Illustrating new understanding of adsorbed water on silica for inducing tetrahedral cobalt(II) for propane dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35698-0
    DOI: 10.1038/s41467-022-35698-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35698-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35698-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carlos Hernández Mejía & Tom W. Deelen & Krijn P. Jong, 2018. "Activity enhancement of cobalt catalysts by tuning metal-support interactions," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. Nicole J. LiBretto & Yinan Xu & Aubrey Quigley & Ethan Edwards & Rhea Nargund & Juan Carlos Vega-Vila & Richard Caulkins & Arunima Saxena & Rajamani Gounder & Jeffrey Greeley & Guanghui Zhang & Jeffre, 2021. "Olefin oligomerization by main group Ga3+ and Zn2+ single site catalysts on SiO2," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Middleton, Richard S. & Gupta, Rajan & Hyman, Jeffrey D. & Viswanathan, Hari S., 2017. "The shale gas revolution: Barriers, sustainability, and emerging opportunities," Applied Energy, Elsevier, vol. 199(C), pages 88-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaowen Chen & Xuetao Qin & Yueyue Jiao & Mi Peng & Jiangyong Diao & Pengju Ren & Chengyu Li & Dequan Xiao & Xiaodong Wen & Zheng Jiang & Ning Wang & Xiangbin Cai & Hongyang Liu & Ding Ma, 2023. "Structure-dependence and metal-dependence on atomically dispersed Ir catalysts for efficient n-butane dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Phong & Carey, J. William & Viswanathan, Hari S. & Porter, Mark, 2018. "Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments," Applied Energy, Elsevier, vol. 230(C), pages 160-174.
    2. Mohamed Mehana & Fangxuan Chen & Mashhad Fahes & Qinjun Kang & Hari Viswanathan, 2022. "Geochemical Modelling of the Fracturing Fluid Transport in Shale Reservoirs," Energies, MDPI, vol. 15(22), pages 1-13, November.
    3. Jin, Xu & Wang, Xiaoqi & Yan, Weipeng & Meng, Siwei & Liu, Xiaodan & Jiao, Hang & Su, Ling & Zhu, Rukai & Liu, He & Li, Jianming, 2019. "Exploration and casting of large scale microscopic pathways for shale using electrodeposition," Applied Energy, Elsevier, vol. 247(C), pages 32-39.
    4. Jiaqi Zhao & Jinjia Liu & Zhenhua Li & Kaiwen Wang & Run Shi & Pu Wang & Qing Wang & Geoffrey I. N. Waterhouse & Xiaodong Wen & Tierui Zhang, 2023. "Ruthenium-cobalt single atom alloy for CO photo-hydrogenation to liquid fuels at ambient pressures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Jong-Hyun Kim & Yong-Gil Lee, 2018. "Learning Curve, Change in Industrial Environment, and Dynamics of Production Activities in Unconventional Energy Resources," Sustainability, MDPI, vol. 10(9), pages 1-11, September.
    6. Anthony N. Rezitis & Panagiotis Andrikopoulos & Theodoros Daglis, 2024. "Assessing the asymmetric volatility linkages of energy and agricultural commodity futures during low and high volatility regimes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(3), pages 451-483, March.
    7. Michael J. Zachman & Victor Fung & Felipe Polo-Garzon & Shaohong Cao & Jisue Moon & Zhennan Huang & De-en Jiang & Zili Wu & Miaofang Chi, 2022. "Measuring and directing charge transfer in heterogenous catalysts," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Wang, Yan & Zhong, Dong-Liang & Li, Zheng & Li, Jian-Bo, 2020. "Application of tetra-n-butyl ammonium bromide semi-clathrate hydrate for CO2 capture from unconventional natural gases," Energy, Elsevier, vol. 197(C).
    9. Li, Boying & Zheng, Mingbo & Zhao, Xinxin & Chang, Chun-Ping, 2021. "An assessment of the effect of partisan ideology on shale gas production and the implications for environmental regulations," Economic Systems, Elsevier, vol. 45(3).
    10. Yijing Liu & Rankun Zhang & Le Lin & Yichao Wang & Changping Liu & Rentao Mu & Qiang Fu, 2023. "Direct observation of accelerating hydrogen spillover via surface-lattice-confinement effect," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Yang, Ruiyue & Hong, Chunyang & Huang, Zhongwei & Song, Xianzhi & Zhang, Shikun & Wen, Haitao, 2019. "Coal breakage using abrasive liquid nitrogen jet and its implications for coalbed methane recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Aba, Michael M. & Parente, Virginia & dos Santos, Edmilson Moutinho, 2022. "Estimation of water demand of the three major Brazilian shale-gas basins: Implications for water availability," Energy Policy, Elsevier, vol. 168(C).
    13. Zhao, Stephen & Alexandroff, Alan, 2019. "Current and future struggles to eliminate coal," Energy Policy, Elsevier, vol. 129(C), pages 511-520.
    14. Katende, Allan & Rutqvist, Jonny & Massion, Cody & Radonjic, Mileva, 2023. "Experimental flow-through a single fracture with monolayer proppant at reservoir conditions: A case study on Caney Shale, Southwest Oklahoma, USA," Energy, Elsevier, vol. 273(C).
    15. Sun, Chuanwang & Ding, Dan & Fang, Xingming & Zhang, Huiming & Li, Jianglong, 2019. "How do fossil energy prices affect the stock prices of new energy companies? Evidence from Divisia energy price index in China's market," Energy, Elsevier, vol. 169(C), pages 637-645.
    16. Feng, Gan & Kang, Yong & Sun, Ze-dong & Wang, Xiao-chuan & Hu, Yao-qing, 2019. "Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale," Energy, Elsevier, vol. 173(C), pages 870-882.
    17. Wang, Hui & Chen, Li & Qu, Zhiguo & Yin, Ying & Kang, Qinjun & Yu, Bo & Tao, Wen-Quan, 2020. "Modeling of multi-scale transport phenomena in shale gas production — A critical review," Applied Energy, Elsevier, vol. 262(C).
    18. Weige Han & Zhendong Cui & Zhengguo Zhu, 2021. "The Effect of Perforation Spacing on the Variation of Stress Shadow," Energies, MDPI, vol. 14(13), pages 1-16, July.
    19. Hong, Bingyuan & Li, Xiaoping & Song, Shangfei & Chen, Shilin & Zhao, Changlong & Gong, Jing, 2020. "Optimal planning and modular infrastructure dynamic allocation for shale gas production," Applied Energy, Elsevier, vol. 261(C).
    20. Johnson, Derek R. & Heltzel, Robert & Nix, Andrew C. & Clark, Nigel & Darzi, Mahdi, 2017. "Greenhouse gas emissions and fuel efficiency of in-use high horsepower diesel, dual fuel, and natural gas engines for unconventional well development," Applied Energy, Elsevier, vol. 206(C), pages 739-750.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35698-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.