IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06903-w.html
   My bibliography  Save this article

Activity enhancement of cobalt catalysts by tuning metal-support interactions

Author

Listed:
  • Carlos Hernández Mejía

    (Utrecht University)

  • Tom W. Deelen

    (Utrecht University)

  • Krijn P. Jong

    (Utrecht University)

Abstract

Interactions between metal nanoparticles and support materials can strongly influence the performance of catalysts. In particular, reducible oxidic supports can form suboxides that can decorate metal nanoparticles and enhance catalytic performance or block active sites. Therefore, tuning this metal-support interaction is essential for catalyst design. Here, we investigate reduction-oxidation-reduction (ROR) treatments as a method to affect metal-support interactions and related catalytic performance. Controlled oxidation of pre-reduced cobalt on reducible (TiO2 and Nb2O5) and irreducible (α-Al2O3) supports leads to the formation of hollow cobalt oxide particles. The second reduction results in a twofold increase in cobalt surface area only on reducible oxides and proportionally enhances the cobalt-based catalytic activity during Fischer-Tropsch synthesis at industrially relevant conditions. Such activities are usually only obtained by noble metal promotion of cobalt catalysts. ROR proves an effective approach to tune the interaction between metallic nanoparticles and reducible oxidic supports, leading to improved catalytic performance.

Suggested Citation

  • Carlos Hernández Mejía & Tom W. Deelen & Krijn P. Jong, 2018. "Activity enhancement of cobalt catalysts by tuning metal-support interactions," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06903-w
    DOI: 10.1038/s41467-018-06903-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06903-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06903-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zijun Huang & Dedong He & Weihua Deng & Guowu Jin & Ke Li & Yongming Luo, 2023. "Illustrating new understanding of adsorbed water on silica for inducing tetrahedral cobalt(II) for propane dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Michael J. Zachman & Victor Fung & Felipe Polo-Garzon & Shaohong Cao & Jisue Moon & Zhennan Huang & De-en Jiang & Zili Wu & Miaofang Chi, 2022. "Measuring and directing charge transfer in heterogenous catalysts," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Yijing Liu & Rankun Zhang & Le Lin & Yichao Wang & Changping Liu & Rentao Mu & Qiang Fu, 2023. "Direct observation of accelerating hydrogen spillover via surface-lattice-confinement effect," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Hao Meng & Yusen Yang & Tianyao Shen & Wei Liu & Lei Wang & Pan Yin & Zhen Ren & Yiming Niu & Bingsen Zhang & Lirong Zheng & Hong Yan & Jian Zhang & Feng-Shou Xiao & Min Wei & Xue Duan, 2023. "A strong bimetal-support interaction in ethanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Jiaqi Zhao & Jinjia Liu & Zhenhua Li & Kaiwen Wang & Run Shi & Pu Wang & Qing Wang & Geoffrey I. N. Waterhouse & Xiaodong Wen & Tierui Zhang, 2023. "Ruthenium-cobalt single atom alloy for CO photo-hydrogenation to liquid fuels at ambient pressures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Pei Xiong & Zhihang Xu & Tai-Sing Wu & Tong Yang & Qiong Lei & Jiangtong Li & Guangchao Li & Ming Yang & Yun-Liang Soo & Robert David Bennett & Shu Ping Lau & Shik Chi Edman Tsang & Ye Zhu & Molly Men, 2024. "Synthesis of core@shell catalysts guided by Tammann temperature," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Ming Xu & Xuetao Qin & Yao Xu & Xiaochen Zhang & Lirong Zheng & Jin-Xun Liu & Meng Wang & Xi Liu & Ding Ma, 2022. "Boosting CO hydrogenation towards C2+ hydrocarbons over interfacial TiO2−x/Ni catalysts," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06903-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.