IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28336-2.html
   My bibliography  Save this article

Cooperation in alternating interactions with memory constraints

Author

Listed:
  • Peter S. Park

    (Harvard University)

  • Martin A. Nowak

    (Harvard University
    Harvard University)

  • Christian Hilbe

    (Max Planck Institute for Evolutionary Biology)

Abstract

In repeated social interactions, individuals often employ reciprocal strategies to maintain cooperation. To explore the emergence of reciprocity, many theoretical models assume synchronized decision making. In each round, individuals decide simultaneously whether to cooperate or not. Yet many manifestations of reciprocity in nature are asynchronous. Individuals provide help at one time and receive help at another. Here, we explore such alternating games in which players take turns. We mathematically characterize all Nash equilibria among memory-one strategies. Moreover, we use evolutionary simulations to explore various model extensions, exploring the effect of discounted games, irregular alternation patterns, and higher memory. In all cases, we observe that mutual cooperation still evolves for a wide range of parameter values. However, compared to simultaneous games, alternating games require different strategies to maintain cooperation in noisy environments. Moreover, none of the respective strategies are evolutionarily stable.

Suggested Citation

  • Peter S. Park & Martin A. Nowak & Christian Hilbe, 2022. "Cooperation in alternating interactions with memory constraints," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28336-2
    DOI: 10.1038/s41467-022-28336-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28336-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28336-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Huanren, 2018. "Errors can increase cooperation in finite populations," Games and Economic Behavior, Elsevier, vol. 107(C), pages 203-219.
    2. Ethan Akin, 2015. "What You Gotta Know to Play Good in the Iterated Prisoner’s Dilemma," Games, MDPI, vol. 6(3), pages 1-16, June.
    3. Matthew O. Jackson & Tomas Rodriguez-Barraquer & Xu Tan, 2012. "Social Capital and Social Quilts: Network Patterns of Favor Exchange," American Economic Review, American Economic Association, vol. 102(5), pages 1857-1897, August.
    4. Alexander J. Stewart & Joshua B. Plotkin, 2015. "The Evolvability of Cooperation under Local and Non-Local Mutations," Games, MDPI, vol. 6(3), pages 1-20, July.
    5. Fudenberg, Drew & Imhof, Lorens A., 2006. "Imitation processes with small mutations," Journal of Economic Theory, Elsevier, vol. 131(1), pages 251-262, November.
    6. Kate Donahue & Oliver P. Hauser & Martin A. Nowak & Christian Hilbe, 2020. "Evolving cooperation in multichannel games," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    7. García, Julián & van Veelen, Matthijs, 2016. "In and out of equilibrium I: Evolution of strategies in repeated games with discounting," Journal of Economic Theory, Elsevier, vol. 161(C), pages 161-189.
    8. Martin A. Nowak & Akira Sasaki & Christine Taylor & Drew Fudenberg, 2004. "Emergence of cooperation and evolutionary stability in finite populations," Nature, Nature, vol. 428(6983), pages 646-650, April.
    9. Christian Hilbe & Krishnendu Chatterjee & Martin A. Nowak, 2018. "Publisher Correction: Partners and rivals in direct reciprocity," Nature Human Behaviour, Nature, vol. 2(7), pages 523-523, July.
    10. Christian Hilbe & Krishnendu Chatterjee & Martin A. Nowak, 2018. "Partners and rivals in direct reciprocity," Nature Human Behaviour, Nature, vol. 2(7), pages 469-477, July.
    11. Christian Hilbe & Kristin Hagel & Manfred Milinski, 2016. "Asymmetric Power Boosts Extortion in an Economic Experiment," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-14, October.
    12. M.C. Boerlijst & M.A. Nowak & K. Sigmund, 1997. "Equal Pay for all Prisoners/ The Logic of Contrition," Working Papers ir97073, International Institute for Applied Systems Analysis.
    13. Benjamin M Zagorsky & Johannes G Reiter & Krishnendu Chatterjee & Martin A Nowak, 2013. "Forgiver Triumphs in Alternating Prisoner's Dilemma," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
    14. Julián García & Arne Traulsen, 2012. "The Structure of Mutations and the Evolution of Cooperation," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-9, April.
    15. Hilbe, Christian & Traulsen, Arne & Sigmund, Karl, 2015. "Partners or rivals? Strategies for the iterated prisoner's dilemma," Games and Economic Behavior, Elsevier, vol. 92(C), pages 41-52.
    16. B. Douglas Bernheim & Michael D. Whinston, 1990. "Multimarket Contact and Collusive Behavior," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 1-26, Spring.
    17. Johannes G. Reiter & Christian Hilbe & David G. Rand & Krishnendu Chatterjee & Martin A. Nowak, 2018. "Crosstalk in concurrent repeated games impedes direct reciprocity and requires stronger levels of forgiveness," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    18. Nikoleta E. Glynatsi & Vincent A. Knight, 2021. "A bibliometric study of research topics, collaboration, and centrality in the iterated prisoner’s dilemma," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Wen-Jing & Chen, Zhi & Jin, Ke-Zhong & Wang, Jun & Yuan, Lin & Gu, Changgui & Jiang, Luo-Luo & Perc, Matjaž, 2022. "Options for mobility and network reciprocity to jointly yield robust cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    2. Noblit, Graham Alexander & Henrich, Joseph, 2023. "The Evolution of Ostracism in Human Societies," SocArXiv z3gs7, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Kleshnina & Christian Hilbe & Štěpán Šimsa & Krishnendu Chatterjee & Martin A. Nowak, 2023. "The effect of environmental information on evolution of cooperation in stochastic games," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Shun Kurokawa & Joe Yuichiro Wakano & Yasuo Ihara, 2018. "Evolution of Groupwise Cooperation: Generosity, Paradoxical Behavior, and Non-Linear Payoff Functions," Games, MDPI, vol. 9(4), pages 1-24, December.
    3. Benjamin M Zagorsky & Johannes G Reiter & Krishnendu Chatterjee & Martin A Nowak, 2013. "Forgiver Triumphs in Alternating Prisoner's Dilemma," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
    4. Ma, Xiaojian & Quan, Ji & Wang, Xianjia, 2023. "Evolution of cooperation with nonlinear environment feedback in repeated public goods game," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    5. Masahiko Ueda & Toshiyuki Tanaka, 2020. "Linear algebraic structure of zero-determinant strategies in repeated games," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-13, April.
    6. Laura Schmid & Farbod Ekbatani & Christian Hilbe & Krishnendu Chatterjee, 2023. "Quantitative assessment can stabilize indirect reciprocity under imperfect information," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Ding, Zhen-Wei & Zheng, Guo-Zhong & Cai, Chao-Ran & Cai, Wei-Ran & Chen, Li & Zhang, Ji-Qiang & Wang, Xu-Ming, 2023. "Emergence of cooperation in two-agent repeated games with reinforcement learning," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    8. Molnar, Grant & Hammond, Caroline & Fu, Feng, 2023. "Reactive means in the iterated Prisoner’s dilemma," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    9. Izquierdo, Luis R. & Izquierdo, Segismundo S. & Sandholm, William H., 2019. "An introduction to ABED: Agent-based simulation of evolutionary game dynamics," Games and Economic Behavior, Elsevier, vol. 118(C), pages 434-462.
    10. Yohsuke Murase & Seung Ki Baek, 2021. "Friendly-rivalry solution to the iterated n-person public-goods game," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-17, January.
    11. Christian Hilbe & Moshe Hoffman & Martin A. Nowak, 2015. "Cooperate without Looking in a Non-Repeated Game," Games, MDPI, vol. 6(4), pages 1-15, September.
    12. Konrad, Kai A. & Morath, Florian, 2020. "The Volunteer’s Dilemma in Finite Populations," CEPR Discussion Papers 15536, C.E.P.R. Discussion Papers.
    13. Huang, Keke & Liu, Yishun & Zhang, Yichi & Yang, Chunhua & Wang, Zhen, 2018. "Understanding cooperative behavior of agents with heterogeneous perceptions in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 234-240.
    14. John T. Scholz & Cheng‐Lung Wang, 2009. "Learning to Cooperate: Learning Networks and the Problem of Altruism," American Journal of Political Science, John Wiley & Sons, vol. 53(3), pages 572-587, July.
    15. Bin Wu & Julián García & Christoph Hauert & Arne Traulsen, 2013. "Extrapolating Weak Selection in Evolutionary Games," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-7, December.
    16. Marta C. Couto & Saptarshi Pal, 2023. "Introspection Dynamics in Asymmetric Multiplayer Games," Dynamic Games and Applications, Springer, vol. 13(4), pages 1256-1285, December.
    17. Feinberg, Yossi & Kets, Willemien, 2014. "Ranking friends," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 1-9.
    18. Sandholm, William H., 2012. "Stochastic imitative game dynamics with committed agents," Journal of Economic Theory, Elsevier, vol. 147(5), pages 2056-2071.
    19. Liu, Jinzhuo & Meng, Haoran & Wang, Wei & Xie, Zhongwen & Yu, Qian, 2019. "Evolution of cooperation on independent networks: The influence of asymmetric information sharing updating mechanism," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 234-241.
    20. Christian Hilbe & Martin A Nowak & Arne Traulsen, 2013. "Adaptive Dynamics of Extortion and Compliance," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-9, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28336-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.