IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v428y2004i6983d10.1038_nature02414.html
   My bibliography  Save this article

Emergence of cooperation and evolutionary stability in finite populations

Author

Listed:
  • Martin A. Nowak

    (Harvard University
    Harvard University)

  • Akira Sasaki

    (Kyushu University)

  • Christine Taylor

    (Harvard University
    MIT)

  • Drew Fudenberg

    (Harvard University)

Abstract

To explain the evolution of cooperation by natural selection has been a major goal of biologists since Darwin. Cooperators help others at a cost to themselves, while defectors receive the benefits of altruism without providing any help in return. The standard game dynamical formulation is the ‘Prisoner's Dilemma’1,2,3,4,5,6,7,8,9,10,11, in which two players have a choice between cooperation and defection. In the repeated game, cooperators using direct reciprocity cannot be exploited by defectors, but it is unclear how such cooperators can arise in the first place12,13,14,15. In general, defectors are stable against invasion by cooperators. This understanding is based on traditional concepts of evolutionary stability and dynamics in infinite populations16,17,18,19,20. Here we study evolutionary game dynamics in finite populations21,22,23,24,25. We show that a single cooperator using a strategy like ‘tit-for-tat’ can invade a population of defectors with a probability that corresponds to a net selective advantage. We specify the conditions required for natural selection to favour the emergence of cooperation and define evolutionary stability in finite populations.

Suggested Citation

  • Martin A. Nowak & Akira Sasaki & Christine Taylor & Drew Fudenberg, 2004. "Emergence of cooperation and evolutionary stability in finite populations," Nature, Nature, vol. 428(6983), pages 646-650, April.
  • Handle: RePEc:nat:nature:v:428:y:2004:i:6983:d:10.1038_nature02414
    DOI: 10.1038/nature02414
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02414
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02414?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:428:y:2004:i:6983:d:10.1038_nature02414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.