IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v46y2019i3d10.1007_s11116-018-9907-2.html
   My bibliography  Save this article

A utility-based bicycle speed choice model with time and energy factors

Author

Listed:
  • Alexander Bigazzi

    (University of British Columbia)

  • Robin Lindsey

    (University of British Columbia)

Abstract

This paper presents a utility-based behavioral model of bicycle speed choice. A mathematical framework is developed with travel time, energy expenditure, and control factors. Observational speed data are used to calibrate the model and estimate marginal rates of substitution between energy expenditure and travel time. The model is validated by applying it to predict speed changes on pedal-assist electric bicycles. This paper lays a foundation for further development of operational active travel speed and joint speed-route choice models, which can lead to more sensitive and behaviorally-grounded operations, microsimulation, and mode choice models. In addition, the findings have implications for modeling the effects of emerging bicycle technologies. Further research is needed to calibrate the model for a broad population of travelers.

Suggested Citation

  • Alexander Bigazzi & Robin Lindsey, 2019. "A utility-based bicycle speed choice model with time and energy factors," Transportation, Springer, vol. 46(3), pages 995-1009, June.
  • Handle: RePEc:kap:transp:v:46:y:2019:i:3:d:10.1007_s11116-018-9907-2
    DOI: 10.1007/s11116-018-9907-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-018-9907-2
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-018-9907-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Verhoef, Erik T. & Rouwendal, Jan, 2004. "A behavioural model of traffic congestion: Endogenizing speed choice, traffic safety and time losses," Journal of Urban Economics, Elsevier, vol. 56(3), pages 408-434, November.
    2. Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
    3. Patricia L. Mokhtarian & Ilan Salomon & Matan E. Singer, 2015. "What Moves Us? An Interdisciplinary Exploration of Reasons for Traveling," Transport Reviews, Taylor & Francis Journals, vol. 35(3), pages 250-274, May.
    4. Cherry, Christopher & Cervero, Robert, 2007. "Use characteristics and mode choice behavior of electric bike users in China," Transport Policy, Elsevier, vol. 14(3), pages 247-257, May.
    5. Jin, Sheng & Qu, Xiaobo & Zhou, Dan & Xu, Cheng & Ma, Dongfang & Wang, Dianhai, 2015. "Estimating cycleway capacity and bicycle equivalent unit for electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 225-248.
    6. Börjesson, Maria & Eliasson, Jonas, 2012. "The value of time and external benefits in bicycle appraisal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 673-683.
    7. Zhang, Shuichao & Ren, Gang & Yang, Renfa, 2013. "Simulation model of speed–density characteristics for mixed bicycle flow—Comparison between cellular automata model and gas dynamics model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5110-5118.
    8. Ipek Sener & Naveen Eluru & Chandra Bhat, 2009. "An analysis of bicycle route choice preferences in Texas, US," Transportation, Springer, vol. 36(5), pages 511-539, September.
    9. Gatersleben, Birgitta & Appleton, Katherine M., 2007. "Contemplating cycling to work: Attitudes and perceptions in different stages of change," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 302-312, May.
    10. Small, Kenneth A., 2012. "Valuation of travel time," Economics of Transportation, Elsevier, vol. 1(1), pages 2-14.
    11. Parkin, John & Rotheram, Jonathon, 2010. "Design speeds and acceleration characteristics of bicycle traffic for use in planning, design and appraisal," Transport Policy, Elsevier, vol. 17(5), pages 335-341, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiawei Gui & Qunqi Wu, 2020. "Multiple Utility Analyses for Sustainable Public Transport Planning and Management: Evidence from GPS-Equipped Taxi Data in Haikou," Sustainability, MDPI, vol. 12(19), pages 1-46, September.
    2. Tscharaktschiew, Stefan, 2020. "Why are highway speed limits really justified? An equilibrium speed choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 317-351.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McArthur, David Philip & Hong, Jinhyun, 2019. "Visualising where commuting cyclists travel using crowdsourced data," Journal of Transport Geography, Elsevier, vol. 74(C), pages 233-241.
    2. Agarwal, Amit & Ziemke, Dominik & Nagel, Kai, 2020. "Bicycle superhighway: An environmentally sustainable policy for urban transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 519-540.
    3. Khashayar Kazemzadeh & Aliaksei Laureshyn & Lena Winslott Hiselius & Enrico Ronchi, 2020. "Expanding the Scope of the Bicycle Level-of-Service Concept: A Review of the Literature," Sustainability, MDPI, vol. 12(7), pages 1-30, April.
    4. Stefan Flügel & Nina Hulleberg & Aslak Fyhri & Christian Weber & Gretar Ævarsson, 2019. "Empirical speed models for cycling in the Oslo road network," Transportation, Springer, vol. 46(4), pages 1395-1419, August.
    5. Yan Wang & Yibin Ao & Yuting Zhang & Yan Liu & Lei Zhao & Yunfeng Chen, 2019. "Impact of the Built Environment and Bicycling Psychological Factors on the Acceptable Bicycling Distance of Rural Residents," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    6. Fu, Liwei & Farber, Steven, 2017. "Bicycling frequency: A study of preferences and travel behavior in Salt Lake City, Utah," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 30-50.
    7. Jinhyun Hong & David McArthur & Varun Raturi, 2020. "Did Safe Cycling Infrastructure Still Matter During a COVID-19 Lockdown?," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    8. Li, Qiaoru & Zhang, Zhe & Li, Kun & Chen, Liang & Wei, Zhenlin & Zhang, Jingchun, 2020. "Evolutionary dynamics of traveling behavior in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    9. Anowar, Sabreena & Eluru, Naveen & Hatzopoulou, Marianne, 2017. "Quantifying the value of a clean ride: How far would you bicycle to avoid exposure to traffic-related air pollution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 66-78.
    10. Rupi, Federico & Freo, Marzia & Poliziani, Cristian & Postorino, Maria Nadia & Schweizer, Joerg, 2023. "Analysis of gender-specific bicycle route choices using revealed preference surveys based on GPS traces," Transport Policy, Elsevier, vol. 133(C), pages 1-14.
    11. Paulsen, Mads & Rich, Jeppe, 2023. "Societally optimal expansion of bicycle networks," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    12. Yeran Sun & Amin Mobasheri, 2017. "Utilizing Crowdsourced Data for Studies of Cycling and Air Pollution Exposure: A Case Study Using Strava Data," IJERPH, MDPI, vol. 14(3), pages 1-19, March.
    13. Meister, Adrian & Felder, Matteo & Schmid, Basil & Axhausen, Kay W., 2023. "Route choice modeling for cyclists on urban networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    14. Liu, Yanan & Yang, Dujuan & Timmermans, Harry J.P. & de Vries, Bauke, 2020. "Analysis of the impact of street-scale built environment design near metro stations on pedestrian and cyclist road segment choice: A stated choice experiment," Journal of Transport Geography, Elsevier, vol. 82(C).
    15. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    16. Liang, Xiao & Zhang, Tianyu & Xie, Meiquan & Jia, Xudong, 2021. "Analyzing bicycle level of service using virtual reality and deep learning technologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 115-129.
    17. Ralph Buehler & Jennifer Dill, 2016. "Bikeway Networks: A Review of Effects on Cycling," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 9-27, January.
    18. Lopes, Miguel & Mélice Dias, Ana & Silva, Cecília, 2021. "The impact of urban features in cycling potential – A tale of Portuguese cities," Journal of Transport Geography, Elsevier, vol. 95(C).
    19. George Liu & Samuel Nello‐Deakin & Marco te Brömmelstroet & Yuki Yamamoto, 2020. "What Makes a Good Cargo Bike Route? Perspectives from Users and Planners," American Journal of Economics and Sociology, Wiley Blackwell, vol. 79(3), pages 941-965, May.
    20. Fitch, Dillon T. & Handy, Susan L., 2020. "Road environments and bicyclist route choice: The cases of Davis and San Francisco, CA," Journal of Transport Geography, Elsevier, vol. 85(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:46:y:2019:i:3:d:10.1007_s11116-018-9907-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.