IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v137y2020icp519-540.html
   My bibliography  Save this article

Bicycle superhighway: An environmentally sustainable policy for urban transport

Author

Listed:
  • Agarwal, Amit
  • Ziemke, Dominik
  • Nagel, Kai

Abstract

Bicycle is a sustainable low-carbon transport mode. However, insufficient or unplanned infrastructure leads to decrease in the share of bicycle in many cities of developing nations. In order to increase the bicycle share and to provide safer, faster and more direct routes, a bicycle superhighway is proposed for urban areas. This study identifies the potential of increase in the bicycle share. For maximum utilization of the new infrastructure, an algorithm is presented to identify the optimum number and locations of the connectors between proposed new infrastructure and existing network. Household income levels are incorporated into the decision making process of individual travellers for a better understanding of the modal shift. A real-world case study of Patna, India is chosen to show the application of the proposed superhighway. It is shown that for Patna, the bicycle share can escalate as high as 48% up from 32% by providing this kind of infrastructure. However, together with bicycles, allowing motorbikes on the superhighway limits the bicycle share to 44%. The increase in bicycle share is mainly a result of people switching from motorbike, public transport and walk to the bicycle. Further, to evaluate the benefits of the bicycle superhighway, this study first extends an emission modelling tool to estimate the time-dependent, vehicle-specific emissions under mixed traffic conditions. Allowing only bicyclists on the superhighway improves congested urban areas, reduces emissions, and increases accessibility. However, allowing motorbikes on the superhighway increases emissions significantly in the central part of the urban area and reduces accessibilities by bicycle mode to education facilities which are undesirable. This study elicits that a physically segregated high-quality bicycle superhighway will not only attract current non-cyclist travellers and increase the share of the bicycle mode, but will also reduce negative transport externalities significantly.

Suggested Citation

  • Agarwal, Amit & Ziemke, Dominik & Nagel, Kai, 2020. "Bicycle superhighway: An environmentally sustainable policy for urban transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 519-540.
  • Handle: RePEc:eee:transa:v:137:y:2020:i:c:p:519-540
    DOI: 10.1016/j.tra.2019.06.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096585641731162X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2019.06.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bugliarello, George, 2006. "Urban sustainability: Dilemmas, challenges and paradigms," Technology in Society, Elsevier, vol. 28(1), pages 19-26.
    2. Bai, Lu & Liu, Pan & Chan, Ching-Yao & Li, Zhibin, 2017. "Estimating level of service of mid-block bicycle lanes considering mixed traffic flow," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 203-217.
    3. Su, Jason G. & Winters, Meghan & Nunes, Melissa & Brauer, Michael, 2010. "Designing a route planner to facilitate and promote cycling in Metro Vancouver, Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(7), pages 495-505, August.
    4. Badami, Madhav G. & Haider, Murtaza, 2007. "An analysis of public bus transit performance in Indian cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 961-981, December.
    5. Kevin Krizek & Ahmed El-Geneidy & Kristin Thompson, 2007. "A detailed analysis of how an urban trail system affects cyclists’ travel," Transportation, Springer, vol. 34(5), pages 611-624, September.
    6. Benjamin Kickhöfer & Friederike Hülsmann & Regine Gerike & Kai Nagel, 2013. "Rising car user costs: comparing aggregated and geo-spatial impacts on travel demand and air pollutant emissions," Chapters, in: Thomas Vanoutrive & Ann Verhetsel (ed.), Smart Transport Networks, chapter 9, pages 180-207, Edward Elgar Publishing.
    7. Tilahun, Nebiyou Y. & Levinson, David M. & Krizek, Kevin J., 2007. "Trails, lanes, or traffic: Valuing bicycle facilities with an adaptive stated preference survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 287-301, May.
    8. Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
    9. Wardman, Mark & Tight, Miles & Page, Matthew, 2007. "Factors influencing the propensity to cycle to work," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 339-350, May.
    10. C. Gawron, 1998. "An Iterative Algorithm to Determine the Dynamic User Equilibrium in a Traffic Simulation Model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 393-407.
    11. Rahul, T.M. & Verma, Ashish, 2013. "Economic impact of non-motorized transportation in Indian cities," Research in Transportation Economics, Elsevier, vol. 38(1), pages 22-34.
    12. Jin, Sheng & Qu, Xiaobo & Zhou, Dan & Xu, Cheng & Ma, Dongfang & Wang, Dianhai, 2015. "Estimating cycleway capacity and bicycle equivalent unit for electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 225-248.
    13. Goldman, Todd & Gorham, Roger, 2006. "Sustainable urban transport: Four innovative directions," Technology in Society, Elsevier, vol. 28(1), pages 261-273.
    14. Verma, Meghna & Rahul, T.M. & Reddy, Peesari Vamshidhar & Verma, Ashish, 2016. "The factors influencing bicycling in the Bangalore city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 29-40.
    15. Percoco, Marco, 2014. "The effect of road pricing on traffic composition: Evidence from a natural experiment in Milan, Italy," Transport Policy, Elsevier, vol. 31(C), pages 55-60.
    16. Ipek Sener & Naveen Eluru & Chandra Bhat, 2009. "An analysis of bicycle route choice preferences in Texas, US," Transportation, Springer, vol. 36(5), pages 511-539, September.
    17. Cohen, Barney, 2006. "Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability," Technology in Society, Elsevier, vol. 28(1), pages 63-80.
    18. Nebiyou Tilahun & Kevin Krizek & David Levinson, 2007. "Trails, Lanes, or Traffic: Value of Different Bicycle Facilities Using Adaptive Stated-Preference Survey," Working Papers 200701, University of Minnesota: Nexus Research Group.
    19. Martens, Karel, 2007. "Promoting bike-and-ride: The Dutch experience," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 326-338, May.
    20. Gatersleben, Birgitta & Appleton, Katherine M., 2007. "Contemplating cycling to work: Attitudes and perceptions in different stages of change," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 302-312, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sina Shokoohyar & Amirsalar Jafari Gorizi & Vahid Ghomi & Weimin Liang & Hak J. Kim, 2022. "Sustainable Transportation in Practice: A Systematic Quantitative Review of Case Studies," Sustainability, MDPI, vol. 14(5), pages 1-24, February.
    2. Wang, Yacan & Douglas, Matthew & Hazen, Benjamin, 2021. "Diffusion of public bicycle systems: Investigating influences of users’ perceived risk and switching intention," Transportation Research Part A: Policy and Practice, Elsevier, vol. 143(C), pages 1-13.
    3. Zhang, Ze & Guo, Yuchen & Feng, Li, 2022. "Externalities of dockless bicycle-sharing systems: Implications for green recovery of the transportation sector," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 410-419.
    4. Mogens Fosgerau & Miroslawa Lukawska & Mads Paulsen & Thomas Kj{ae}r Rasmussen, 2022. "Bikeability and the induced demand for cycling," Papers 2210.02504, arXiv.org, revised Dec 2022.
    5. Lorena Cadavid & Kathleen Salazar-Serna, 2021. "Mapping the Research Landscape for the Motorcycle Market Policies: Sustainability as a Trend—A Systematic Literature Review," Sustainability, MDPI, vol. 13(19), pages 1-22, September.
    6. Georgios Grigoropoulos & Seyed Abdollah Hosseini & Andreas Keler & Heather Kaths & Matthias Spangler & Fritz Busch & Klaus Bogenberger, 2021. "Traffic Simulation Analysis of Bicycle Highways in Urban Areas," Sustainability, MDPI, vol. 13(3), pages 1-25, January.
    7. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    8. Changlong Sun & Yongli Zhang & Wenwen Ma & Rong Wu & Shaojian Wang, 2022. "The Impacts of Urban Form on Carbon Emissions: A Comprehensive Review," Land, MDPI, vol. 11(9), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    2. Ehrgott, Matthias & Wang, Judith Y.T. & Raith, Andrea & van Houtte, Chris, 2012. "A bi-objective cyclist route choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 652-663.
    3. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    4. Khashayar Kazemzadeh & Aliaksei Laureshyn & Lena Winslott Hiselius & Enrico Ronchi, 2020. "Expanding the Scope of the Bicycle Level-of-Service Concept: A Review of the Literature," Sustainability, MDPI, vol. 12(7), pages 1-30, April.
    5. McArthur, David Philip & Hong, Jinhyun, 2019. "Visualising where commuting cyclists travel using crowdsourced data," Journal of Transport Geography, Elsevier, vol. 74(C), pages 233-241.
    6. Ruiz, Tomás & Bernabé, José C., 2014. "Measuring factors influencing valuation of nonmotorized improvement measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 195-211.
    7. Jinhyun Hong & David McArthur & Varun Raturi, 2020. "Did Safe Cycling Infrastructure Still Matter During a COVID-19 Lockdown?," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    8. Anowar, Sabreena & Eluru, Naveen & Hatzopoulou, Marianne, 2017. "Quantifying the value of a clean ride: How far would you bicycle to avoid exposure to traffic-related air pollution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 66-78.
    9. Nkurunziza, Alphonse & Zuidgeest, Mark & Brussel, Mark & Van Maarseveen, Martin, 2012. "Examining the potential for modal change: Motivators and barriers for bicycle commuting in Dar-es-Salaam," Transport Policy, Elsevier, vol. 24(C), pages 249-259.
    10. José Castillo-Manzano & Antonio Sánchez-Braza, 2013. "Managing a smart bicycle system when demand outstrips supply: the case of the university community in Seville," Transportation, Springer, vol. 40(2), pages 459-477, February.
    11. Tomás Rossetti & Verónica Saud & Ricardo Hurtubia, 2019. "I want to ride it where I like: measuring design preferences in cycling infrastructure," Transportation, Springer, vol. 46(3), pages 697-718, June.
    12. Lu, Wei & Scott, Darren M. & Dalumpines, Ron, 2018. "Understanding bike share cyclist route choice using GPS data: Comparing dominant routes and shortest paths," Journal of Transport Geography, Elsevier, vol. 71(C), pages 172-181.
    13. Damant-Sirois, Gabriel & El-Geneidy, Ahmed M., 2015. "Who cycles more? Determining cycling frequency through a segmentation approach in Montreal, Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 113-125.
    14. Wang, Dianhai & Feng, Tianjun & Liang, Chunyan, 2008. "Research on bicycle conversion factors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(8), pages 1129-1139, October.
    15. Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
    16. Zhao, Pengjun & Li, Shengxiao, 2017. "Bicycle-metro integration in a growing city: The determinants of cycling as a transfer mode in metro station areas in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 46-60.
    17. Vandenbulcke, Grégory & Dujardin, Claire & Thomas, Isabelle & Geus, Bas de & Degraeuwe, Bart & Meeusen, Romain & Panis, Luc Int, 2011. "Cycle commuting in Belgium: Spatial determinants and 're-cycling' strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 118-137, February.
    18. Ralph Buehler & Jennifer Dill, 2016. "Bikeway Networks: A Review of Effects on Cycling," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 9-27, January.
    19. Fitch, Dillon T. & Handy, Susan L., 2020. "Road environments and bicyclist route choice: The cases of Davis and San Francisco, CA," Journal of Transport Geography, Elsevier, vol. 85(C).
    20. Kamargianni, Maria, 2015. "Investigating next generation's cycling ridership to promote sustainable mobility in different types of cities," Research in Transportation Economics, Elsevier, vol. 53(C), pages 45-55.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:137:y:2020:i:c:p:519-540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.