IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v32y2005i5p473-494.html
   My bibliography  Save this article

A GA-based household scheduler

Author

Listed:
  • Konrad Meister
  • Martin Frick
  • Kay Axhausen

Abstract

No abstract is available for this item.

Suggested Citation

  • Konrad Meister & Martin Frick & Kay Axhausen, 2005. "A GA-based household scheduler," Transportation, Springer, vol. 32(5), pages 473-494, September.
  • Handle: RePEc:kap:transp:v:32:y:2005:i:5:p:473-494
    DOI: 10.1007/s11116-005-5325-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11116-005-5325-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-005-5325-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Charypar & Kai Nagel, 2005. "Generating complete all-day activity plans with genetic algorithms," Transportation, Springer, vol. 32(4), pages 369-397, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ho, Chinh & Mulley, Corinne, 2015. "Intra-household Interactions in tour-based mode choice: The role of social, temporal, spatial and resource constraints," Transport Policy, Elsevier, vol. 38(C), pages 52-63.
    2. Zhang, Junyi & Kuwano, Masashi & Lee, Backjin & Fujiwara, Akimasa, 2009. "Modeling household discrete choice behavior incorporating heterogeneous group decision-making mechanisms," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 230-250, February.
    3. Ermagun, Alireza & Levinson, David, 2016. "Intra-household bargaining for school trip accompaniment of children: A group decision approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 222-234.
    4. Thibaut Dubernet & Kay Axhausen, 2015. "Implementing a household joint activity-travel multi- agent simulation tool: first results," Transportation, Springer, vol. 42(5), pages 753-769, September.
    5. Kato, Hironori & Matsumoto, Manabu, 2009. "Intra-household interaction in a nuclear family: A utility-maximizing approach," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 191-203, February.
    6. Chinh Ho & Corinne Mulley, 2015. "Intra-household interactions in transport research: a review," Transport Reviews, Taylor & Francis Journals, vol. 35(1), pages 33-55, January.
    7. Vo, Khoa D. & Lam, William H.K. & Chen, Anthony & Shao, Hu, 2020. "A household optimum utility approach for modeling joint activity-travel choices in congested road networks," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 93-125.
    8. Fang, Zhixiang & Tu, Wei & Li, Qingquan & Li, Qiuping, 2011. "A multi-objective approach to scheduling joint participation with variable space and time preferences and opportunities," Journal of Transport Geography, Elsevier, vol. 19(4), pages 623-634.
    9. Linda Nijland & Theo Arentze & Harry Timmermans, 2013. "Representing and estimating interactions between activities in a need-based model of activity generation," Transportation, Springer, vol. 40(2), pages 413-430, February.
    10. Arentze, Theo A. & Timmermans, Harry J.P., 2009. "A need-based model of multi-day, multi-person activity generation," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 251-265, February.
    11. De Witte, Astrid & Hollevoet, Joachim & Dobruszkes, Frédéric & Hubert, Michel & Macharis, Cathy, 2013. "Linking modal choice to motility: A comprehensive review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 329-341.
    12. Lee, Jae Hyun & Goulias, Konstadinos G., 2018. "Companionship and time investment in social fields at different life cycle stages: Implications for activity and travel modeling and simulation," Research in Transportation Economics, Elsevier, vol. 68(C), pages 18-28.
    13. Yao, Mingzhu & Wang, Donggen & Yang, Hai, 2017. "A game-theoretic model of car ownership and household time allocation," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 667-685.
    14. Hejun Kang & Darren Scott, 2011. "Impact of different criteria for identifying intra-household interactions: a case study of household time allocation," Transportation, Springer, vol. 38(1), pages 81-99, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schwarz, Gregor & Bichler, Martin, 2022. "How to trade thirty thousand products: A wholesale market design for road capacity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 167-185.
    2. Zahra Navidi & Nicole Ronald & Stephan Winter, 2018. "Comparison between ad-hoc demand responsive and conventional transit: a simulation study," Public Transport, Springer, vol. 10(1), pages 147-167, May.
    3. Amit Agarwal & Benjamin Kickhöfer, 2018. "The correlation of externalities in marginal cost pricing: lessons learned from a real-world case study," Transportation, Springer, vol. 45(3), pages 849-873, May.
    4. Hackney, Jeremy & Marchal, Fabrice, 2011. "A coupled multi-agent microsimulation of social interactions and transportation behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(4), pages 296-309, May.
    5. Kaddoura, Ihab & Nagel, Kai, 2019. "Congestion pricing in a real-world oriented agent-based simulation context," Research in Transportation Economics, Elsevier, vol. 74(C), pages 40-51.
    6. Alejandro Rojano-Padrón & Marc Olivier Metais & Francisco J. Ramos-Real & Yannick Perez, 2023. "Tenerife’s Infrastructure Plan for Electromobility: A MATSim Evaluation," Energies, MDPI, vol. 16(3), pages 1-24, January.
    7. Huang, Arthur & Levinson, David, 2017. "A model of two-destination choice in trip chains with GPS data," Journal of choice modelling, Elsevier, vol. 24(C), pages 51-62.
    8. Ren, Xiyuan & Chow, Joseph Y.J., 2022. "A random-utility-consistent machine learning method to estimate agents’ joint activity scheduling choice from a ubiquitous data set," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 396-418.
    9. Reza Vosooghi & Joseph Kamel & Jakob Puchinger & Vincent Leblond & Marija Jankovic, 2019. "Robo-Taxi service fleet sizing: assessing the impact of user trust and willingness-to-use," Transportation, Springer, vol. 46(6), pages 1997-2015, December.
    10. Shanjiang Zhu & David Levinson & Lei Zhang, 2007. "An Agent-based Route Choice Model," Working Papers 000089, University of Minnesota: Nexus Research Group.
    11. Usman Ahmed & Ana Tsui Moreno & Rolf Moeckel, 2021. "Microscopic activity sequence generation: a multiple correspondence analysis to explain travel behavior based on socio-demographic person attributes," Transportation, Springer, vol. 48(3), pages 1481-1502, June.
    12. Leng, Nuannuan & Corman, Francesco, 2020. "The role of information availability to passengers in public transport disruptions: An agent-based simulation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 214-236.
    13. Xu, Zhiheng & Kang, Jee Eun & Chen, Roger, 2018. "A random utility based estimation framework for the household activity pattern problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 321-337.
    14. Sylvie Occelli & Luca Staricco, 2009. "Learning about Urban Mobility: Experiences with a Multiagent-System Model," Environment and Planning B, , vol. 36(5), pages 772-786, October.
    15. Pougala, Janody & Hillel, Tim & Bierlaire, Michel, 2022. "Capturing trade-offs between daily scheduling choices," Journal of choice modelling, Elsevier, vol. 43(C).
    16. Lucas javaudin & André de Palma, 2024. "METROPOLIS2: Bridging Theory and Simulation in Agent-Based Transport Modeling," THEMA Working Papers 2024-03, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    17. Theo Arentze & Pauline van den Berg & Harry Timmermans, 2012. "Modeling Social Networks in Geographic Space: Approach and Empirical Application," Environment and Planning A, , vol. 44(5), pages 1101-1120, May.
    18. Gurumurthy, Krishna Murthy & Kockelman, Kara M., 2021. "Impacts of shared automated vehicles on airport access and operations, with opportunities for revenue recovery: Case Study of Austin, Texas," Research in Transportation Economics, Elsevier, vol. 90(C).
    19. Saadi, Ismaïl & Mustafa, Ahmed & Teller, Jacques & Cools, Mario, 2018. "Investigating the impact of river floods on travel demand based on an agent-based modeling approach: The case of Liège, Belgium," Transport Policy, Elsevier, vol. 67(C), pages 102-110.
    20. Gunnar Flötteröd & Yu Chen & Kai Nagel, 2012. "Behavioral Calibration and Analysis of a Large-Scale Travel Microsimulation," Networks and Spatial Economics, Springer, vol. 12(4), pages 481-502, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:32:y:2005:i:5:p:473-494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.