IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v19y2019i3d10.1007_s11067-018-9421-2.html
   My bibliography  Save this article

Competition between High Speed Rail and Conventional Transport Modes: Market Entry Game Analysis on Indian Corridors

Author

Listed:
  • Varun Raturi

    (Indian Institute of Science)

  • Ashish Verma

    (Indian Institute of Science)

Abstract

This paper investigates the competition between HSR and the incumbent with vertical service differentiation for Indian corridors. As Indian government plans to invest in this new technology, strategic decisions pertaining to type of corridor, speed of HSR, HSR technology, given the competition scenario on that corridor becomes vital. The strategic interactions between the operators are modelled as a three staged game between the entrant and the incumbent considering the competition over fare and frequency to maximize different objective functions i.e. Profit and Social Welfare. Speed of HSR is taken as a strategic variable in the game with two levels of high speed, {Low-H, High-H}. This model is applied on two corridors of India of different length i.e. Bangalore-Delhi (competition with airlines with length of corridor being 2400 km) and Bangalore-Mysore (competition with bus with length of corridor being 150 km). Revealed and stated preference surveys are conducted for the passengers traveling on these corridors and a discrete choice model was estimated for both the corridors. These models were used to determine the modal share in the new hypothetical scenario which were in turn used in defining objective functions such as profits and social welfare. Various game scenarios characterized by sunk and variable cost of the modes are formulated and equilibrium for all demand levels is computed for both the corridors for these different objective functions. Results demonstrates variation in Nash equilibrium for different game scenarios and hence indicates the importance of incorporating speed as a strategic variable. Changing the objective function to social welfare maximization results in different equilibrium solution for Bangalore-Delhi corridor. Thus, impact of different combinations of demand, cost structures and objective functions are explored on the market equilibrium thereby providing interesting insights in this area.

Suggested Citation

  • Varun Raturi & Ashish Verma, 2019. "Competition between High Speed Rail and Conventional Transport Modes: Market Entry Game Analysis on Indian Corridors," Networks and Spatial Economics, Springer, vol. 19(3), pages 763-790, September.
  • Handle: RePEc:kap:netspa:v:19:y:2019:i:3:d:10.1007_s11067-018-9421-2
    DOI: 10.1007/s11067-018-9421-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-018-9421-2
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-018-9421-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    2. Small, Kenneth A & Rosen, Harvey S, 1981. "Applied Welfare Economics with Discrete Choice Models," Econometrica, Econometric Society, vol. 49(1), pages 105-130, January.
    3. Wang, Judith Y.T. & Yang, Hai, 2005. "A game-theoretic analysis of competition in a deregulated bus market," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 41(4), pages 329-355, July.
    4. Román, Concepción & Espino, Raquel & Martín, Juan Carlos, 2007. "Competition of high-speed train with air transport: The case of Madrid–Barcelona," Journal of Air Transport Management, Elsevier, vol. 13(5), pages 277-284.
    5. Fu, Xiaowen & Zhang, Anming & Lei, Zheng, 2012. "Will China’s airline industry survive the entry of high-speed rail?," Research in Transportation Economics, Elsevier, vol. 35(1), pages 13-25.
    6. Yang, Hai & Yan Kong, Hoi & Meng, Qiang, 2001. "Value-of-time distributions and competitive bus services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(6), pages 411-424, December.
    7. Adler, Nicole & Pels, Eric & Nash, Chris, 2010. "High-speed rail and air transport competition: Game engineering as tool for cost-benefit analysis," Transportation Research Part B: Methodological, Elsevier, vol. 44(7), pages 812-833, August.
    8. Louviere,Jordan J. & Hensher,David A. & Swait,Joffre D. With contributions by-Name:Adamowicz,Wiktor, 2000. "Stated Choice Methods," Cambridge Books, Cambridge University Press, number 9780521788304.
    9. Mar González-Savignat, 2004. "Competition in Air Transport," Journal of Transport Economics and Policy, University of Bath, vol. 38(1), pages 77-107, January.
    10. Ginés de Rus & Gustavo Nombela, 2007. "Is Investment in High Speed Rail Socially Profitable?," Journal of Transport Economics and Policy, University of Bath, vol. 41(1), pages 3-23, January.
    11. Román, Concepción & Martín, Juan Carlos, 2014. "Integration of HSR and air transport: Understanding passengers’ preferences," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 129-141.
    12. Terry L. Friesz & Joel A. Gottfried & Edward K. Morlok, 1986. "A Sequential Shipper-Carrier Network Model for Predicting Freight Flows," Transportation Science, INFORMS, vol. 20(2), pages 80-91, May.
    13. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2015. "Would competition between air transport and high-speed rail benefit environment and social welfare?," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 118-137.
    14. Campos, Javier & de Rus, Ginés, 2009. "Some stylized facts about high-speed rail: A review of HSR experiences around the world," Transport Policy, Elsevier, vol. 16(1), pages 19-28, January.
    15. Friesz, Terry L. & Mookherjee, Reetabrata & Holguín-Veras, José & Rigdon, Matthew A., 2008. "Dynamic pricing in an urban freight environment," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 305-324, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rategh, Yalda & Tamannaei, Mohammad & Zarei, Hamid, 2022. "A game-theoretic approach to an oligopolistic transportation market: Coopetition between incumbent systems subject to the entrance threat of an HSR service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 144-171.
    2. Sahu, Saransh & Verma, Ashish, 2022. "Quantifying wider economic impacts of high-speed connectivity and accessibility: The case of the Karnataka high-speed rail," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 141-155.
    3. Zhao, Jianting & Sun, Guibo & Webster, Chris, 2022. "Does China-Pakistan Economic Corridor improve connectivity in Pakistan? A protocol assessing the planned transport network infrastructure," Journal of Transport Geography, Elsevier, vol. 100(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsunoda, Yushi, 2018. "Transportation policy for high-speed rail competing with airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 350-360.
    2. Chen, Zhenhua, 2023. "Socioeconomic Impacts of high-speed rail: A bibliometric analysis," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    3. Wan, Yulai & Ha, Hun-Koo & Yoshida, Yuichiro & Zhang, Anming, 2016. "Airlines’ reaction to high-speed rail entries: Empirical study of the Northeast Asian market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 532-557.
    4. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    5. Zhu, Feng & Wu, Xu & Cao, Chengxuan, 2021. "High-speed rail and air transport competition under high flight delay conditions in China: A case study of the Beijing-Shanghai corridor," Utilities Policy, Elsevier, vol. 71(C).
    6. Jiang, Changmin & Zhang, Anming, 2016. "Airline network choice and market coverage under high-speed rail competition," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 248-260.
    7. Li, Zhi-Chun & Sheng, Dian, 2016. "Forecasting passenger travel demand for air and high-speed rail integration service: A case study of Beijing-Guangzhou corridor, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 397-410.
    8. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2016. "Air transport and high-speed rail competition: Environmental implications and mitigation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 261-276.
    9. Jiang, Changmin & D'Alfonso, Tiziana & Wan, Yulai, 2017. "Air-rail cooperation: Partnership level, market structure and welfare implications," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 461-482.
    10. Emami, Maryam & Haghshenas, Hossein & Talebian, Ahmadreza & Kermanshahi, Shahab, 2022. "A game theoretic approach to study the impact of transportation policies on the competition between transit and private car in the urban context," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 320-337.
    11. Wang, Chunan & Jiang, Changmin & Zhang, Anming, 2021. "Effects of Airline Entry on High-Speed Rail," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 242-265.
    12. Jiang, Changmin & Zhang, Anming, 2014. "Effects of high-speed rail and airline cooperation under hub airport capacity constraint," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 33-49.
    13. Wang, Kun & Xia, Wenyi & Zhang, Anming, 2017. "Should China further expand its high-speed rail network? Consider the low-cost carrier factor," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 105-120.
    14. Adler, Nicole & Pels, Eric & Nash, Chris, 2010. "High-speed rail and air transport competition: Game engineering as tool for cost-benefit analysis," Transportation Research Part B: Methodological, Elsevier, vol. 44(7), pages 812-833, August.
    15. Wang, Wei & Sun, Huijun & Wu, Jianjun, 2020. "How does the decision of high-speed rail operator affect social welfare? Considering competition between high-speed rail and air transport," Transport Policy, Elsevier, vol. 88(C), pages 1-15.
    16. Dobruszkes, Frédéric, 2011. "High-speed rail and air transport competition in Western Europe: A supply-oriented perspective," Transport Policy, Elsevier, vol. 18(6), pages 870-879, November.
    17. Wen Yang & Quanliang Chen & Jing Yang, 2022. "Factors Affecting Travel Mode Choice between High-Speed Railway and Road Passenger Transport—Evidence from China," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    18. Nicole Adler & Chris Nash & Eric Pels, 2008. "High-Speed Rail & Air Transport Competition," Tinbergen Institute Discussion Papers 08-103/3, Tinbergen Institute.
    19. Li, Zhi-Chun & Tu, Ningwen & Fu, Xiaowen & Sheng, Dian, 2022. "Modeling the effects of airline and high-speed rail cooperation on multi-airport systems: The implications on congestion, competition and social welfare," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 448-478.
    20. de Ayala, Amaia & Hoyos, David & Mariel, Petr, 2015. "Suitability of discrete choice experiments for landscape management under the European Landscape Convention," Journal of Forest Economics, Elsevier, vol. 21(2), pages 79-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:19:y:2019:i:3:d:10.1007_s11067-018-9421-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.