IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v17y2017i2d10.1007_s11067-017-9338-1.html
   My bibliography  Save this article

Network Expansion to Mitigate Market Power

Author

Listed:
  • Alexander Zerrahn

    (German Institute for Economic Research (DIW Berlin))

  • Daniel Huppmann

    (German Institute for Economic Research (DIW Berlin)
    International Institute for Applied System Analysis (IIASA))

Abstract

Constrained transmission capacity in electricity networks may give generators the possibility to game the market by specifically causing congestion and thereby appropriating excessive rents. Investment in network capacity can ameliorate such behavior by reducing the potential for strategic behavior. However, modeling Nash equilibria between generators, which explicitly account for their impact on the network, is mathematically and computationally challenging. We propose a three-stage model to describe how network investment can reduce market power exertion: a benevolent planner decides on network upgrades for existing lines anticipating the gaming opportunities by strategic generators. These firms, in turn, anticipate their impact on market-clearing prices and grid congestion. In this respect, we provide the first model endogenizing the trade-off between the costs of grid investment and benefits from reduced market power potential in short-run market clearing. In a numerical example using a three-node network, we illustrate three distinct effects: firstly, by reducing market power exertion, network expansion can yield welfare gains beyond pure efficiency increases. Anticipating gaming possibilities when planning network expansion can push welfare close to a first-best competitive benchmark. Secondly, network upgrades entail a relative shift of rents from producers to consumers when congestion rents were excessive. Thirdly, investment may yield suboptimal or even disequilibrium outcomes when strategic behavior of certain market participants is neglected in network planning.

Suggested Citation

  • Alexander Zerrahn & Daniel Huppmann, 2017. "Network Expansion to Mitigate Market Power," Networks and Spatial Economics, Springer, vol. 17(2), pages 611-644, June.
  • Handle: RePEc:kap:netspa:v:17:y:2017:i:2:d:10.1007_s11067-017-9338-1
    DOI: 10.1007/s11067-017-9338-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-017-9338-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-017-9338-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Natalia Fabra & Nils‐Henrik Fehr & David Harbord, 2006. "Designing electricity auctions," RAND Journal of Economics, RAND Corporation, vol. 37(1), pages 23-46, March.
    2. Steven Gabriel & Sauleh Siddiqui & Antonio Conejo & Carlos Ruiz, 2013. "Solving Discretely-Constrained Nash–Cournot Games with an Application to Power Markets," Networks and Spatial Economics, Springer, vol. 13(3), pages 307-326, September.
    3. Natalia Fabra & Nils-Henrik M. von der Fehr & David Harbord, 2006. "Designing Electricity Auctions," RAND Journal of Economics, The RAND Corporation, vol. 37(1), pages 23-46, Spring.
    4. Dastidar, Krishnendu Ghosh, 1995. "On the Existence of Pure Strategy Bertrand Equilibrium," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(1), pages 19-32, January.
    5. Bert Willems, 2002. "Modeling Cournot Competition in an Electricity Market with Transmission Constraints," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 95-125.
    6. Léautier, Thomas-Olivier, 2013. "Fred Schweppe meets Marcel Boiteux and Antoine-Augustin Cournot: transmission constraints and strategic underinvestment in electric power generation," IDEI Working Papers 796, Institut d'Économie Industrielle (IDEI), Toulouse.
    7. Huppmann, Daniel & Egerer, Jonas, 2015. "National-strategic investment in European power transmission capacity," European Journal of Operational Research, Elsevier, vol. 247(1), pages 191-203.
    8. RUIZ, Carlos & CONEJO, Antonio J. & SMEERS, Yves, 2012. "Equilibria in an oligopolistic electricity pool with stepwise offer curves," LIDAM Reprints CORE 2395, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Willems, Bert & Rumiantseva, Ina & Weigt, Hannes, 2009. "Cournot versus Supply Functions: What does the data tell us?," Energy Economics, Elsevier, vol. 31(1), pages 38-47, January.
    10. Roberto Roson & Franz Hubert, 2015. "Bargaining Power and Value Sharing in Distribution Networks: A Cooperative Game Theory Approach," Networks and Spatial Economics, Springer, vol. 15(1), pages 71-87, March.
    11. Xinmin Hu & Daniel Ralph, 2007. "Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices," Operations Research, INFORMS, vol. 55(5), pages 809-827, October.
    12. Boffa, Federico & Pingali, Viswanath & Vannoni, Davide, 2010. "Increasing market interconnection: An analysis of the Italian electricity spot market," International Journal of Industrial Organization, Elsevier, vol. 28(3), pages 311-322, May.
    13. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    14. Severin Borenstein & James. Bushnell & Steven Stoft, 2000. "The Competitive Effects of Transmission Capacity in A Deregulated Electricity Industry," RAND Journal of Economics, The RAND Corporation, vol. 31(2), pages 294-325, Summer.
    15. Florian Leuthold & Hannes Weigt & Christian Hirschhausen, 2012. "A Large-Scale Spatial Optimization Model of the European Electricity Market," Networks and Spatial Economics, Springer, vol. 12(1), pages 75-107, March.
    16. Jan Abrell & Friedrich Kunz, 2015. "Integrating Intermittent Renewable Wind Generation - A Stochastic Multi-Market Electricity Model for the European Electricity Market," Networks and Spatial Economics, Springer, vol. 15(1), pages 117-147, March.
    17. Benjamin F. Hobbs & Fieke A.M. Rijkers & Maroeska G. Boots, 2005. "The More Cooperation, The More Competition? A Cournot Analysis of the Benefits of Electric Market Coupling," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 69-98.
    18. Ruderer, D., 2012. "The Impact of Transmission Pricing in Network Industries," Cambridge Working Papers in Economics 1230, Faculty of Economics, University of Cambridge.
    19. Tanaka, Makoto, 2009. "Transmission-constrained oligopoly in the Japanese electricity market," Energy Economics, Elsevier, vol. 31(5), pages 690-701, September.
    20. Simona Bigerna, Carlo Andrea Bollino and Paolo Polinori, 2016. "Market Power and Transmission Congestion in the Italian Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    21. Gabriel, Steven A. & Leuthold, Florian U., 2010. "Solving discretely-constrained MPEC problems with applications in electric power markets," Energy Economics, Elsevier, vol. 32(1), pages 3-14, January.
    22. Neuhoff, Karsten & Barquin, Julian & Boots, Maroeska G. & Ehrenmann, Andreas & Hobbs, Benjamin F. & Rijkers, Fieke A.M. & Vazquez, Miguel, 2005. "Network-constrained Cournot models of liberalized electricity markets: the devil is in the details," Energy Economics, Elsevier, vol. 27(3), pages 495-525, May.
    23. Georg Gebhardt and Felix Hoffler, 2013. "How Competitive is Cross-border Trade of Electricity? Theory and Evidence from European Electricity Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    24. Harker, Patrick T., 1991. "Generalized Nash games and quasi-variational inequalities," European Journal of Operational Research, Elsevier, vol. 54(1), pages 81-94, September.
    25. Tanachai Limpaitoon, Yihsu Chen, and Shmuel S. Oren, 2014. "The Impact of Imperfect Competition in Emission Permits Trading on Oligopolistic Electricity Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    26. Giorgia Oggioni & Yves Smeers & Elisabetta Allevi & Siegfried Schaible, 2012. "A Generalized Nash Equilibrium Model of Market Coupling in the European Power System," Networks and Spatial Economics, Springer, vol. 12(4), pages 503-560, December.
    27. Enzo Sauma & Shmuel Oren, 2006. "Proactive planning and valuation of transmission investments in restructured electricity markets," Journal of Regulatory Economics, Springer, vol. 30(3), pages 358-387, November.
    28. S. Siddiqui & S. Gabriel, 2013. "An SOS1-Based Approach for Solving MPECs with a Natural Gas Market Application," Networks and Spatial Economics, Springer, vol. 13(2), pages 205-227, June.
    29. Enzo Sauma & Shmuel Oren, 2006. "Proactive planning and valuation of transmission investments in restructured electricity markets," Journal of Regulatory Economics, Springer, vol. 30(3), pages 261-290, November.
    30. Huppmann, Daniel & Gabriel, Steven A. & Leuthold, Florian U., 2013. "A note on allowing negative energy prices in a discretely constrained MPEC," Energy Economics, Elsevier, vol. 40(C), pages 1023-1025.
    31. Kunz, Friedrich & Zerrahn, Alexander, 2015. "Benefits of coordinating congestion management in electricity transmission networks: Theory and application to Germany," Utilities Policy, Elsevier, vol. 37(C), pages 34-45.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dávid Csercsik & László Á. Kóczy, 2017. "Efficiency and Stability in Electrical Power Transmission Networks: a Partition Function Form Approach," Networks and Spatial Economics, Springer, vol. 17(4), pages 1161-1184, December.
    2. Neetzow, Paul & Mendelevitch, Roman & Siddiqui, Sauleh, 2019. "Modeling coordination between renewables and grid: Policies to mitigate distribution grid constraints using residential PV-battery systems," Energy Policy, Elsevier, vol. 132(C), pages 1017-1033.
    3. Mathew P. Abraham & Ankur A. Kulkarni, 2020. "Price-coupling games and the generation expansion planning problem," Annals of Operations Research, Springer, vol. 295(1), pages 1-19, December.
    4. C. Ruiz & F. J. Nogales & F. J. Prieto, 2018. "Retail Equilibrium with Switching Consumers in Electricity Markets," Networks and Spatial Economics, Springer, vol. 18(1), pages 145-180, March.
    5. Viacheslav Kalashnikov & Nataliya Kalashnykova & José G. Flores-Muñiz, 2022. "Special Issue on Variational Inequalities: Consistent Conjectural Variations Coincide with the Nash Solution in the Meta-Model," Networks and Spatial Economics, Springer, vol. 22(2), pages 289-313, June.
    6. Devine, Mel T. & Siddiqui, Sauleh, 2023. "Strategic investment decisions in an oligopoly with a competitive fringe: An equilibrium problem with equilibrium constraints approach," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1473-1494.
    7. Kerstin Dächert & Sauleh Siddiqui & Javier Saez-Gallego & Steven A. Gabriel & Juan Miguel Morales, 2019. "A Bicriteria Perspective on L-Penalty Approaches – a Corrigendum to Siddiqui and Gabriel’s L-Penalty Approach for Solving MPECs," Networks and Spatial Economics, Springer, vol. 19(4), pages 1199-1214, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Zerrahn & Daniel Huppmann, 2014. "Network Expansion to Mitigate Market Power: How Increased Integration Fosters Welfare," Discussion Papers of DIW Berlin 1380, DIW Berlin, German Institute for Economic Research.
    2. Spiridonova, Olga, 2016. "Transmission capacities and competition in Western European electricity market," Energy Policy, Elsevier, vol. 96(C), pages 260-273.
    3. Grimm, Veronika & Martin, Alexander & Schmidt, Martin & Weibelzahl, Martin & Zöttl, Gregor, 2016. "Transmission and generation investment in electricity markets: The effects of market splitting and network fee regimes," European Journal of Operational Research, Elsevier, vol. 254(2), pages 493-509.
    4. Huppmann, Daniel & Egerer, Jonas, 2015. "National-strategic investment in European power transmission capacity," European Journal of Operational Research, Elsevier, vol. 247(1), pages 191-203.
    5. David Pozo & Enzo Sauma & Javier Contreras, 2017. "Basic theoretical foundations and insights on bilevel models and their applications to power systems," Annals of Operations Research, Springer, vol. 254(1), pages 303-334, July.
    6. Creti, Anna & Fumagalli, Eileen & Fumagalli, Elena, 2010. "Integration of electricity markets in Europe: Relevant issues for Italy," Energy Policy, Elsevier, vol. 38(11), pages 6966-6976, November.
    7. Kasina, Saamrat & Hobbs, Benjamin F., 2020. "The value of cooperation in interregional transmission planning: A noncooperative equilibrium model approach," European Journal of Operational Research, Elsevier, vol. 285(2), pages 740-752.
    8. Dávid Csercsik, 2016. "Competition and Cooperation in a Bidding Model of Electrical Energy Trade," Networks and Spatial Economics, Springer, vol. 16(4), pages 1043-1073, December.
    9. Grimm, Veronika & Martin, Alexander & Weibelzahl, Martin & Zöttl, Gregor, 2014. "Transmission and Generation Investment in Electricity Markets: The Effects of Market Splitting and Network Fee Regimes," Discussion Paper Series of SFB/TR 15 Governance and the Efficiency of Economic Systems 460, Free University of Berlin, Humboldt University of Berlin, University of Bonn, University of Mannheim, University of Munich.
    10. Petropoulos, Georgios & Willems, Bert, 2020. "Long-term transmission rights and dynamic efficiency," Energy Economics, Elsevier, vol. 88(C).
    11. Jonas Egerer, 2016. "Open Source Electricity Model for Germany (ELMOD-DE)," Data Documentation 83, DIW Berlin, German Institute for Economic Research.
    12. Wolf-Peter Schill & Jonas Egerer & Juan Rosellón, 2015. "Testing regulatory regimes for power transmission expansion with fluctuating demand and wind generation," Journal of Regulatory Economics, Springer, vol. 47(1), pages 1-28, February.
    13. Huppmann, Daniel & Siddiqui, Sauleh, 2018. "An exact solution method for binary equilibrium problems with compensation and the power market uplift problem," European Journal of Operational Research, Elsevier, vol. 266(2), pages 622-638.
    14. Grimm, Veronika & Martin, Alexander & Weibenzahl, Martin & Zoettl, Gregor, 2014. "Transmission and generation investment in electricity markets: The effects of market splitting and network fee regimes," FAU Discussion Papers in Economics 04/2014, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    15. Dávid Csercsik & László Á. Kóczy, 2017. "Efficiency and Stability in Electrical Power Transmission Networks: a Partition Function Form Approach," Networks and Spatial Economics, Springer, vol. 17(4), pages 1161-1184, December.
    16. Martin Weibelzahl & Alexandra Märtz, 2020. "Optimal storage and transmission investments in a bilevel electricity market model," Annals of Operations Research, Springer, vol. 287(2), pages 911-940, April.
    17. Pär Holmberg & Andy Philpott, 2014. "Supply function equilibria in transportation networks," Cambridge Working Papers in Economics 1421, Faculty of Economics, University of Cambridge.
    18. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    19. Paul Neetzow & Roman Mendelevitch & Sauleh Siddiqui, 2018. "Modeling Coordination between Renewables and Grid: Policies to Mitigate Distribution Grid Constraints Using Residential PV-Battery Systems," Discussion Papers of DIW Berlin 1766, DIW Berlin, German Institute for Economic Research.
    20. Pepermans, Guido & Willems, Bert, 2010. "Cost Recovery in Congested Electricity Networks," Working Papers 2010/22, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:17:y:2017:i:2:d:10.1007_s11067-017-9338-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.