IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v55y2007i5p809-827.html
   My bibliography  Save this article

Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices

Author

Listed:
  • Xinmin Hu

    (Australian School of Business, University of New South Wales, NSW 2052, Australia)

  • Daniel Ralph

    (Judge Business School, University of Cambridge, Cambridge CB2 1AG, United Kingdom)

Abstract

We study a bilevel noncooperative game-theoretic model of restructured electricity markets, with locational marginal prices. Each player in this game faces a bilevel optimization problem that we model as a mathematical program with equilibrium constraints (MPEC). The corresponding game is an example of an equilibrium program with equilibrium constraints (EPEC). We establish sufficient conditions for the existence of pure-strategy Nash equilibria for this class of bilevel games and give some applications. We show by examples the effect of network transmission limits, i.e., congestion, on the existence of equilibria. Then we study, for more general equilibrium programs with equilibrium constraints, the weaker pure-strategy concepts of local Nash and Nash stationary equilibria. We pose the latter as solutions of complementarity problems (CPs) and show their equivalence with the former in some cases. Finally, we present numerical examples of methods that attempt to find local Nash equilibria or Nash stationary points of randomly generated electricity market games.

Suggested Citation

  • Xinmin Hu & Daniel Ralph, 2007. "Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices," Operations Research, INFORMS, vol. 55(5), pages 809-827, October.
  • Handle: RePEc:inm:oropre:v:55:y:2007:i:5:p:809-827
    DOI: 10.1287/opre.1070.0431
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1070.0431
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1070.0431?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hung-po Chao & Stephen Peck, 1997. "An Institutional Design for an Electricity Contract Market with Central Dispatch," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 85-110.
    2. Berry, Carolyn A. & Hobbs, Benjamin F. & Meroney, William A. & O'Neill, Richard P. & StewartJr, William R., 1999. "Understanding how market power can arise in network competition: a game theoretic approach," Utilities Policy, Elsevier, vol. 8(3), pages 139-158, September.
    3. Holger Scheel & Stefan Scholtes, 2000. "Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 1-22, February.
    4. Byong-Hun Ahn & William W. Hogan, 1982. "On Convergence of the PIES Algorithm for Computing Equilibria," Operations Research, INFORMS, vol. 30(2), pages 281-300, April.
    5. William W. Hogan, 1997. "A Market Power Model with Strategic Interaction in Electricity Networks," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 107-141.
    6. Cardell, Judith B. & Hitt, Carrie Cullen & Hogan, William W., 1997. "Market power and strategic interaction in electricity networks," Resource and Energy Economics, Elsevier, vol. 19(1-2), pages 109-137, March.
    7. Arne Stolbjerg Drud, 1994. "CONOPT—A Large-Scale GRG Code," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 207-216, May.
    8. Green, Richard J & Newbery, David M, 1992. "Competition in the British Electricity Spot Market," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 929-953, October.
    9. Shmuel S. Oren, 1997. "Economic Inefficiency of Passive Transmission Rights in Congested Electricity Systems with Competitive Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 63-83.
    10. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    11. Hogan, William W, 1992. "Contract Networks for Electric Power Transmission," Journal of Regulatory Economics, Springer, vol. 4(3), pages 211-242, September.
    12. Steven Stoft, 1999. "Financial Transmission Rights Meet Cournot: How TCCs Curb Market Power," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 1-23.
    13. Daniel Ralph, 1994. "Global Convergence of Damped Newton's Method for Nonsmooth Equations via the Path Search," Mathematics of Operations Research, INFORMS, vol. 19(2), pages 352-389, May.
    14. Hu, X. & Ralph, D. & Ralph, E.K. & Bardsley, P. & Ferris, M.C., 2004. "Electricity Generation with Looped Transmission Networks: Bidding to an ISO," Cambridge Working Papers in Economics 0470, Faculty of Economics, University of Cambridge.
    15. Stefan Scholtes & Michael Stöhr, 2001. "How Stringent is the Linear Independence Assumption for Mathematical Programs with Complementarity Constraints?," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 851-863, November.
    16. Klemperer, Paul D & Meyer, Margaret A, 1989. "Supply Function Equilibria in Oligopoly under Uncertainty," Econometrica, Econometric Society, vol. 57(6), pages 1243-1277, November.
    17. X. M. Hu & D. Ralph, 2004. "Convergence of a Penalty Method for Mathematical Programming with Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 123(2), pages 365-390, November.
    18. Balder, Erik J, 1995. "A Unifying Approach to Existence of Nash Equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 24(1), pages 79-94.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, X. & Ralph, R., 2006. "Using EPECs to model bilevel games in restructured electricity markets with locational prices," Cambridge Working Papers in Economics 0619, Faculty of Economics, University of Cambridge.
    2. Xinmin Hu & Daniel Ralph & Eric K. Ralph & Peter Bardsley & Michael C. Ferris, 2004. "Electricity Generation with Looped Transmission Networks: Bidding to an ISO," Working Papers EP65, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    3. Rajnish Kamat & Shmuel Oren, 2004. "Two-settlement Systems for Electricity Markets under Network Uncertainty and Market Power," Journal of Regulatory Economics, Springer, vol. 25(1), pages 5-37, January.
    4. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    5. Robert Wilson, 2008. "Supply Function Equilibrium in a Constrained Transmission System," Operations Research, INFORMS, vol. 56(2), pages 369-382, April.
    6. Bjørndal, Mette & Gribkovskaia, Victoria & Jörnsten, Kurt, 2014. "Market Power in a Power Market with Transmission Constraints," Discussion Papers 2014/29, Norwegian School of Economics, Department of Business and Management Science.
    7. Ventosa, Mariano & Baillo, Alvaro & Ramos, Andres & Rivier, Michel, 2005. "Electricity market modeling trends," Energy Policy, Elsevier, vol. 33(7), pages 897-913, May.
    8. Benjamin F. Hobbs & J. S. Pang, 2007. "Nash-Cournot Equilibria in Electric Power Markets with Piecewise Linear Demand Functions and Joint Constraints," Operations Research, INFORMS, vol. 55(1), pages 113-127, February.
    9. E. Anderson & A. Philpott & H. Xu, 2007. "Modelling the effects of interconnection between electricity markets subject to uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(1), pages 1-26, February.
    10. Berry, Carolyn A. & Hobbs, Benjamin F. & Meroney, William A. & O'Neill, Richard P. & StewartJr, William R., 1999. "Understanding how market power can arise in network competition: a game theoretic approach," Utilities Policy, Elsevier, vol. 8(3), pages 139-158, September.
    11. Guido Pepermans & Bert Willems, 2005. "The Potential Impact of Cross-Ownership in Transmission: an Application to the Belgian Electricity Market," Working Papers of Department of Economics, Leuven ces0503, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
    12. Karsten Neuhoff, 2003. "Integrating Transmission and Energy Markets Mitigates Market Power," Working Papers EP17, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    13. Guido Pepermans & Bert Willems, 2004. "Ramsey Pricing in a Congested Network with Market Power in Generation: A Numerical Illustration for Belgium," Energy, Transport and Environment Working Papers Series ete0408, KU Leuven, Department of Economics - Research Group Energy, Transport and Environment.
    14. Bert Willems & Guido Pepermans, 2003. "Regulating transmission in a spatial oligopoly: a numerical illustration for Belgium," Energy, Transport and Environment Working Papers Series ete0314, KU Leuven, Department of Economics - Research Group Energy, Transport and Environment.
    15. DAXHELET, Olivier & SMEERS, Yves, 1999. "Variational inequality models of restructured electricity systems," LIDAM Discussion Papers CORE 1999066, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Paul Twomey & Richard Green & Karsten Neuhoff & David Newbery, 2005. "A Review of the Monitoring of Market Power: The Possible Roles of TSOs in Monitoring for Market Power Issues in Congested Transmission Systems," Working Papers 0502, Massachusetts Institute of Technology, Center for Energy and Environmental Policy Research.
    17. Wei Jing-Yuan & Yves Smeers, 1999. "Spatial Oligopolistic Electricity Models with Cournot Generators and Regulated Transmission Prices," Operations Research, INFORMS, vol. 47(1), pages 102-112, February.
    18. Spiridonova, Olga, 2016. "Transmission capacities and competition in Western European electricity market," Energy Policy, Elsevier, vol. 96(C), pages 260-273.
    19. Pär Holmberg & Andy Philpott, 2014. "Supply function equilibria in transportation networks," Cambridge Working Papers in Economics 1421, Faculty of Economics, University of Cambridge.
    20. Cristian Zambrano & Yris Olaya, 2017. "An agent-based simulation approach to congestion management for the Colombian electricity market," Annals of Operations Research, Springer, vol. 258(2), pages 217-236, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:55:y:2007:i:5:p:809-827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.