IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v55y2007i1p113-127.html
   My bibliography  Save this article

Nash-Cournot Equilibria in Electric Power Markets with Piecewise Linear Demand Functions and Joint Constraints

Author

Listed:
  • Benjamin F. Hobbs

    (Department of Geography and Environmental Engineering, The Johns Hopkins University, Baltimore, Maryland 21218-2682)

  • J. S. Pang

    (Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180-3590)

Abstract

Most previous Nash-Cournot models of competition among electricity generators have assumed smooth demand (price) functions, facilitating computation and proofs of existence and uniqueness. However, nonsmooth demand functions are an important feature of real power markets due, for example, to price caps and generator recognition of transmission constraints that limit exports. A more general model of Nash-Cournot competition on networks is proposed that accounts for these features by including (1) concave piecewise-linear demand curves and (2) joint constraints that include variables from other generating companies within the profit maximization problems for individual generators. The piecewise demand curves imply, in general, a nonmonotone multivalued variational inequality problem. Thus, for instance, imposition of a price cap can destroy the uniqueness properties found in previous models, so that distinct solutions can yield different sets of profits for market participants. The joint constraints turn the equilibrium problem into a quasi-variational inequality, which also can yield multiple solutions. The formulation poses computational challenges that can cause Lemke’s algorithm to fail; a restricted formulation is proposed that can be solved by that algorithm.

Suggested Citation

  • Benjamin F. Hobbs & J. S. Pang, 2007. "Nash-Cournot Equilibria in Electric Power Markets with Piecewise Linear Demand Functions and Joint Constraints," Operations Research, INFORMS, vol. 55(1), pages 113-127, February.
  • Handle: RePEc:inm:oropre:v:55:y:2007:i:1:p:113-127
    DOI: 10.1287/opre.1060.0342
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1060.0342
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1060.0342?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steffan Berridge & Jacek Krawczyk, "undated". "Relaxation Algorithms in Finding Nash Equilibrium," Computing in Economics and Finance 1997 159, Society for Computational Economics.
    2. William W. Hogan, 1997. "A Market Power Model with Strategic Interaction in Electricity Networks," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 107-141.
    3. Cardell, Judith B. & Hitt, Carrie Cullen & Hogan, William W., 1997. "Market power and strategic interaction in electricity networks," Resource and Energy Economics, Elsevier, vol. 19(1-2), pages 109-137, March.
    4. C. E. Lemke, 1965. "Bimatrix Equilibrium Points and Mathematical Programming," Management Science, INFORMS, vol. 11(7), pages 681-689, May.
    5. WEI, Jing-Yuan & SMEERS, Yves, 1999. "Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices," LIDAM Reprints CORE 1454, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Shmuel S. Oren, 1997. "Economic Inefficiency of Passive Transmission Rights in Congested Electricity Systems with Competitive Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 63-83.
    7. Jacqueline Boucher & Yves Smeers, 2001. "Alternative Models of Restructured Electricity Systems, Part 1: No Market Power," Operations Research, INFORMS, vol. 49(6), pages 821-838, December.
    8. Hogan, William W, 1992. "Contract Networks for Electric Power Transmission," Journal of Regulatory Economics, Springer, vol. 4(3), pages 211-242, September.
    9. Hu, X. & Ralph, D. & Ralph, E.K. & Bardsley, P. & Ferris, M.C., 2004. "Electricity Generation with Looped Transmission Networks: Bidding to an ISO," Cambridge Working Papers in Economics 0470, Faculty of Economics, University of Cambridge.
    10. BOUCHER , Jacqueline & SMEERS, Yves, 2001. "Alternative models of restructured electricity systems, part 1: no market power," LIDAM Reprints CORE 1538, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Harker, Patrick T., 1991. "Generalized Nash games and quasi-variational inequalities," European Journal of Operational Research, Elsevier, vol. 54(1), pages 81-94, September.
    12. James Bushnell, 2003. "A Mixed Complementarity Model of Hydrothermal Electricity Competition in the Western United States," Operations Research, INFORMS, vol. 51(1), pages 80-93, February.
    13. Jong-Shi Pang & Masao Fukushima, 2005. "Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games," Computational Management Science, Springer, vol. 2(1), pages 21-56, January.
    14. Wei Jing-Yuan & Yves Smeers, 1999. "Spatial Oligopolistic Electricity Models with Cournot Generators and Regulated Transmission Prices," Operations Research, INFORMS, vol. 47(1), pages 102-112, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    2. David Pozo & Enzo Sauma & Javier Contreras, 2017. "Basic theoretical foundations and insights on bilevel models and their applications to power systems," Annals of Operations Research, Springer, vol. 254(1), pages 303-334, July.
    3. Derek W. Bunn & Fernando S. Oliveira, 2008. "Modeling the Impact of Market Interventions on the Strategic Evolution of Electricity Markets," Operations Research, INFORMS, vol. 56(5), pages 1116-1130, October.
    4. Cristian Zambrano & Yris Olaya, 2017. "An agent-based simulation approach to congestion management for the Colombian electricity market," Annals of Operations Research, Springer, vol. 258(2), pages 217-236, November.
    5. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    6. Jian Yao & Ilan Adler & Shmuel S. Oren, 2008. "Modeling and Computing Two-Settlement Oligopolistic Equilibrium in a Congested Electricity Network," Operations Research, INFORMS, vol. 56(1), pages 34-47, February.
    7. Grimm, Veronika & Martin, Alexander & Schmidt, Martin & Weibelzahl, Martin & Zöttl, Gregor, 2016. "Transmission and generation investment in electricity markets: The effects of market splitting and network fee regimes," European Journal of Operational Research, Elsevier, vol. 254(2), pages 493-509.
    8. Xinmin Hu & Daniel Ralph & Eric K. Ralph & Peter Bardsley & Michael C. Ferris, 2004. "Electricity Generation with Looped Transmission Networks: Bidding to an ISO," Working Papers EP65, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    9. Xinmin Hu & Daniel Ralph, 2007. "Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices," Operations Research, INFORMS, vol. 55(5), pages 809-827, October.
    10. Benjamin F. Hobbs & Fieke A.M. Rijkers & Maroeska G. Boots, 2005. "The More Cooperation, The More Competition? A Cournot Analysis of the Benefits of Electric Market Coupling," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 69-98.
    11. Yao, Jian & Oren, Shmuel S. & Adler, Ilan, 2007. "Two-settlement electricity markets with price caps and Cournot generation firms," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1279-1296, September.
    12. Migot, Tangi & Cojocaru, Monica-G., 2020. "A parametrized variational inequality approach to track the solution set of a generalized nash equilibrium problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1136-1147.
    13. Pepermans, Guido & Willems, Bert, 2010. "Cost Recovery in Congested Electricity Networks," Working Papers 2010/22, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    14. Elisabetta Allevi & Adriana Gnudi & Igor V. Konnov & Giorgia Oggioni, 2017. "Dynamic Spatial Auction Market Models with General Cost Mappings," Networks and Spatial Economics, Springer, vol. 17(2), pages 367-403, June.
    15. Hu, X. & Ralph, R., 2006. "Using EPECs to model bilevel games in restructured electricity markets with locational prices," Cambridge Working Papers in Economics 0619, Faculty of Economics, University of Cambridge.
    16. Han, Deren & Zhang, Hongchao & Qian, Gang & Xu, Lingling, 2012. "An improved two-step method for solving generalized Nash equilibrium problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 613-623.
    17. Guido Pepermans & Bert Willems, 2005. "The Potential Impact of Cross-Ownership in Transmission: an Application to the Belgian Electricity Market," Working Papers of Department of Economics, Leuven ces0503, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
    18. Krebs, Vanessa & Schewe, Lars & Schmidt, Martin, 2018. "Uniqueness and multiplicity of market equilibria on DC power flow networks," European Journal of Operational Research, Elsevier, vol. 271(1), pages 165-178.
    19. Karsten Neuhoff, 2003. "Integrating Transmission and Energy Markets Mitigates Market Power," Working Papers EP17, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    20. Sertaç Oruç & Scott Cunningham, 2014. "Transmission Rights to the Electrical Transmission Grid in the Post Liberalization Era," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 5(4), pages 686-705, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:55:y:2007:i:1:p:113-127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.